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ABSTRACT

During high-speed injection in small-diameter nozzles, a combustible mix-
ture may experience high enough temperature for premature ignition to oc-
cur. Among the various physical mechanisms which may lead to such an
undesirable effect, shear-induced heating is believed to play an important
role. The objective of this effort is to study, theoretically and numerically,

the impact of shear-induced heating on the likelihood of mixture ignition.

The manisfestation of shear-induced heating effects is believed to be con-
siderably dependent on the mode of injection. For the purpose of this study,
two injection modes (short-duration injection and continuous injection) are
distinguished. For short duration injection, shear-induced heating is expected
to be confined to thin laminar boundary layers. This situation is analyzed
using computational codes which implement simplified physical models for
high-speed injection in a constant-diameter nozzle. The computational codes,
which numerically integrate the incompressible vorticity transport and energy

equations, are applied to predict the maximum temperatures experienced by

ii




the mixture. The impact of injection speed and inlet mixture temperature,
and the effect of variable mixture properties were also investigated. For con-
tinuous injection, boundary layer transition is expected to occur. In order
to characterize the shear heating mechanisms within a transitional or turbu-
lent flow environment, one must characterize the mean flow and temperature
field, and fluctuations around the mean. To this end, the mean tempera-
ture solutions are constructed using well-established empirical correlations
for the mean velocity field. Meanwhile, the impact of temperature fluctu-
ations is evaluated in light of direct simulation of isotropic turbulence and

transitional channel flow.
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Chapter 1

Introduction

One of the concerns in design and operation of nozzles used for the injec-
tion of combustible mixtures is prevention or at least minimization of hazards
associated with preignition of the mixture inside the nozzle. Such an undesir-
able event may damage or even cause a complete failure of the entire system.
In particular, the behavior of high-speed liquid propellant flow has a direct
bearing on safety issues (Knapton et al. 1992). Among the various mech-
anisms that could lead to this undesirable event, it is believed that viscous
heating and compression of entrained gas bubble (Nigmatulin & Khabeev
1974; Bourne & Field 1991; Field 1992; Yuan and Prosperetti 1996) play an
important role. Our attention is focused here on shear-induced (or viscous)

heating effects.

Shear-induced heating effects arise due to the rapid acceleration of the
mixture (or fluid) to sufficiently-high velocities which are required to deliver

the necessary charge to a combustion chamber (or mixing device). Thus,




high shearing rates are established which may result in high-enough temper-

atures for spontaneous combustion to occur.

The manifestation of shear induced heating effects are believed to be con-
siderably dependent on the mode of injection. For the purpose of this study,
we distinguish between the following two injection modes: (i) short-duration
injection, in which the charge is impulsively accelerated through the nozzle,
and (ii) continuous injection, where a steady mass flow rate develops within

the nozzle.

To illustrate the differences between the two modes, we consider the fol-
lowing typical range of nozzle parameters and operating conditions. For both
cases, the characteristic nozzle diameter and length are taken as 2 mm and
20 mm, respectively, while the characteristic mixture velocity is roughly 200
m/s. The mixture properties are roughly the same as those of water, so
that its density and kinematic viscosity are respectively approximated by
p = 1000kg/m?® and v = 10~*m?/s. For short-duration injection, the pulse

duration is assumed to be approximately 10ms.

For continuous injection, the flow field dynamics - and corresponding
shear heating rates - may be appropriately interpreted in terms of the flow
Reynolds number. In the targeted range of nozzle applications estimated

above, the Reynolds number based on the nozzle diameter is in the order




of 10°. Accordingly, both transitional and laminar boundary layers are ex-
pected to develop. In the transitional case, shear-induced heating is a result
of “laminar” heating within the boundary layer, and intermittent rollup of
“large-scale” vortices. When the boundary layer becomes turbulent, shear-
induced heating is determined by the mean turbulent temperature distribu-
tion (including the “laminar” heating within the viscous sublayer), and the
fluctuating component (which is dominated by the presence of wide spectrum

of eddy structures).

In the first part of this study, it is argued that the characterization of the
flow field as a fully-developed channel flow (whether laminar, transitional,
or turbulent) is not appropriate for short-duration injection. In this case,
both the evolution flowfield and shear-induced heating mechanism must be
interpreted in terms of the thin, unsteady, developing boundary layers which
are generated along the nozzle walls. To verify this claim, we start by esti-
mating the typical thickness of the boundary layers due to the diffusion of
the vortex sheets which form due to the impulsive acceleration of the mix-
ture. The scaling of the diffusion zone (or boundary layer) may be conserva-
tively estimated through the following measure of the displacement thickness
d* ~ (vt)¥/? = 0.1mm. Thus, during the injection period, viscous effects re-
main confined to a small region close to solid boundaries. Most of the flow in
the channel is still unaffected by viscous diffusion from the wall and remain

potential. Noting that the maximum Reynolds number based on displace-




ment thickness is less than 2 x 104, and considering the stabilizing effects of
the acceleration of the potential core, it is highly unlikely that any instability
mechanism resulting in a transition to turbulence amplifies sign'iﬁcantly dur-
ing such injection durations. Consequently, shear-induced heating associated
with pulsed injection modes must be analyzed using the unsteady, primarily

laminar, development of thin boundary layers close to the nozzle walls.

Based on the above scaling arguments, it is obvious that different ap-
proaches are necessary while simulating shear-induced heating. For continu-
ous injection, the risk of mixture ignition may be best analyzed by investi-

gating the following two possible scenarios:

e The mean temperature distribution exceeds the ignition threshold in a

region of the flow.

e The mean temperature distribution is everywhere below the ignition
threshold, but sustained temperature excursions of large-enough am-

plitude may locally exceed this “critical” value.

In analyzing the latter possibility, we are less concerned with high-frequency,
high-amplitude turbulent fluctuations, since these fluctuations are least effec-
tive in sustaining high shear rates, and are not considered as a likely precur-
sor to mixture ignition. Thus, the contribution of these fluctuations may be
modeled as part of the mean “turbulent” temperature distribution. However,

it is conceivable that (intermittent) rollup of large-scale energetic eddies in a




transitional boundary layer may sustain large-enough viscous heating rates

for the temperature to exceed to the critical value.

However, as noted before, it is believed that the above-mentioned phe-
nomena are highly unlikely during short-duration injection. In this case, the
primary concern is the maximum temperature attained at or near the nozzle
boundaries. Thus, the physical and numerical modeling efforts must focus
on obtaining accurate estimates of the wall and boundary-layer temperature
distributions. The likelihood of non-Newtonian behavior should also be ex-

plored for this type of flow.

Following the above arguments, we shall first focus on a short-duration
acceleration of an incompressible Newtonian fluid in a constant-diameter noz-
zle. Specifically, we were concerned with a simplified channel geometry which
still enables us to observe all of the essential shear heating mechanisms, and
aimed at determination of peak temperatures experienced by the liquid un-
der flow conditions where the nozzle wall boundary layer is predominantly

laminar.

In order to obtain conservative estimates of peak temperatures, an un-
steady one-dimensional analysis of the temperature distribution associated
with sudden fluid acceleration over a flat insulated boundary is first con-

ducted (Chapter 3). The analysis yields analytical expressions of the pre-




vailing temperature distribution during the early stages of boundary layer
formation. In particular, the obtained expressions relate the peak wall tem-
perature to the prevailing Eckert and Prandtl numbers. Results reveal a
quadratic dependence of the normalized wall temperature on impulse ve-
locity, and a complex nonlinear variation with Prandtl number. The latter

dependence highlights a concern for mixtures having high Prandt! number.

Next, simulation of high-speed flow in an axisymmetric nozzle are per-
formed ( Chapter 4). The numerical schemes are based on a finite-difference
discretization of vorticity-based momentum, and energy equations. Variants

of the formulation are considered which use one of the following approaches:
1. full, unsteady equations of motion on a rectangular grid
2. unsteady parabolized equations of motion on uniform mesh
3. unsteady parabolized equations on stretched grid
4. steady parabolized equations on stretched grid
A numerical study of all four formulations is performed and used to:
e establish the validity of adopting a parabolized approximation
° yalidate computational results and refine grid stretching techniques

e numerically analyze the impact of inlet velocity and temperature bound-

ary conditions.




Finally, the effects of wall heat transfer (Chapter 5) and temperature-

dependent properties (Chapter 6) are discussed.

In the second part of this study, we are focused on modeling of shear-
induced heating mechanisms for continuous injection periods, where a steady
mass flow rate develops within the channel. For continuous injection, flow-
field dynamics in the entire channel section are important. Accordingly,
one must be able to characterize the transitional or turbulent flow dynamics

across the channel, i.e the mean flow and fluctuations about the mean flow.

In Chapter 7, we obtain the estimates for the mean flow using simple
empirical correlations for the mean velocity and energy dissipation, which
yields an analytical expression of mean temperature solution. Next, we have
tried to characterize the temperature fluctuations of forced isotropic tur-
bulent flow using direct numerical simulation (in Chapter 8). At last, the
direct numerical simulation is performed on turbulent channel flow (Chapter
9), where transitional turbulent boundary layer is observed, and the impact

of turbulent fluctuations is examined.




Part 1

Numerical Study of Laminar
Flow
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Chapter 2

Numerical approach

2.1 General

As mentioned in the introduction, we are primarily interested in charac-
terizing shear-induced effects during high-speed injection of a combustible

mixture into a small diameter nozzle.

For such applications, shear-induced heating effects are primarily con-
centrated in the viscous boundary layers which develop close to the nozzle
boundaries. Furthermore, since these effects depend strongly on shear rates,
they will be primarily manifested in the thin section of the nozzle, where the
mixture is accelerated to high velocities. Therefore, a proper resolution of
boundary layer development in the thin section of the nozzle is clearly seen
to be a crucial step in any analysis aiming at the characterization of peak

temperatures experienced by the mixture.




In general, accurate resolution of the temperature within the thin bound-
ary layers developed in the thin nozzle section requires a complex analysis
which, in particular, must account for the flowfield dynamics upstream of
the nozzle section. This is the case because the flow conditions at the inlet
of the nozzle may be strongly dependent on the geometry of the converging

section and on the upstream flow profile.

The potential differences in inlet conditions from different nozzle geome-
tries may be illustrated by considering a smoothly tapered nozzle, and a
nozzle formed by a sudden contraction. No flowfield separation is expected
in the first case, resulting in a smooth and monotonic boundary growth across
the contraction. When the contraction is sudden, on the other hand, flowfield
separation may occur upstream. In this situation, the boundary layer within
the thin nozzle section may develop starting from a minute or vanishingly
small thickness. Since the largest shear rates scale according to the ratio of
the characteristic velocity in the potential core (U) to the inlet boundary
layer thickness (do), shear-induced heating mechanisms are expected to be

significantly more pronounced in the latter case.

The potential dependence of shear heating rates on nozzle geometry and
upstream flow conditions complicates numerical study of the correspond-
ing heating effects. On one hand, the simulation must tackle the geometric

complexity of the contraction section — whether smooth or sudden — and
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accurately describe inflow conditions. On the other hand, detailed flowfield
resolution will necessitate restricting the analysis to a limited class of nozzle

geometries and flow conditions.

In order to overcome these limitations, a simplified approach to the prob-
lem will be adopted in the first part of this study. The approach, which is
motivated by our desire to minimize the likelihood of mixture ignition, calls
for conservatively estimating peak temperatures by focusing on worst-case
scenarios. To this end, the analysis shall assume that the flow conditions at
the inlet of the thin nozzle section correspond to a vanishingly small boundary
layer thickness and an essentially flat velocity profile. By doing so, simula-
tion of flow dynamics upstream of the nozzle is avoided, and upper bounds
on the mixture temperature can be efficiently obtained as a function of the

inlet velocity, the nozzle diameter, and the mixture properties.

2.2 Formulation

The physical formulation used in the present study is based on the following

assumptions:
e The combustible mixture is an incompressible Newtonian liquid.

e The flowfield within the nozzle remains axisymmetric.

11



Until section 6, we shall furthermore assume that the mixture has con-
stant properties, so that its motion is governed by the continuity, momentum

and energy conservation equations, respectively written as:

V- 9=0 (2.1)
—
1
%tﬁ =~ Vp+ vV 7 (2.2)
DT
Py = kV2T + pud (2.3)

where ¥ is the velocity vector, p is density, p is pressure, v is the kinematic
viscosity, c, is specific heat at constant pressure, k is the thermal con ductiv-

ity, @ is the viscous dissipation function, and % = %-}- ¥ -A is the material

derivative. For an axisymmetric flowfield, the governing equations are recast

as:

Qo | v, OV _
or T 0z
v, 10v, v, 0%,
o Yo T tar) (29
0%v, 10v, &%,
o T T T e T e e tar)  (26)
oT oT oT

& Y v Y
T +vrar+vzaz aV T+cp<1> (2.7)

0 (2.4)

9v + —a—vl+'u v, —‘—la—p-l-ll(
ot~ Tor 0z por

ov, ov, ov, 10p

and the viscous dissipation function is given by:

ov, )2 + (av,

ov, Ov,
<I)52[(61‘)2-*-(7' 0z

Pl+ (S0 + )2 (28)

Ur

In the numerical study of high-speed nozzle flow, we shall also rely on

the vorticity form of the momentum equations. This alternative formulation
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is obtained by taking the curl of the momentum equations and using the

continuity equation, to get:

ow 0 0 w 0w, 0w
E + E(wvr) + &(W’U;) = V('a? + 1;(;) + @‘) (29)
where
_ = 82), a’Uz
w=Vx v= % o (2.10)

is the vorticity. The latter is related to the radial and streamwise velocity

components through a scalar streamfunction, 1, such that:

18y

VvV, =
T r Oz

10y

v
2 ror

Substituting the velocity components from Eq. (2.10) into Eq. (2.9) results

in the familiar vorticity streamfunction relationship:

0,10y, 10%)

v ar) T r oz

or'r or - (2.11)
The advantage of using a vorticity-streamfunctionn formulation in axisym-
metric flow is that the continuity equation is naturally satisfied since the
velocity field is expressed as the curl of a vector potential (/r), and the

number of “unknown” field variables is reduced from three in the primitive

variables formulation (vr, v, p) to two in the present case (¢, w).
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2.3 Normalization

"The numerical simulations discussed in the following sections solve a normal-
ized form of the governing equations. This normalized form is obtained by
nondimensionalizing variables with respect to the appropriate combination
of the mixture density, p, the nozzle radius, R, the maximum velocity at the
nozzle inlet, U, and the mixture inlet temperature, T,. For the choice of
characteristic density, length, velocity and temperature scales, the normal-

ized constant-property governing equations are listed in Table 2.1 below.
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Table 2.1

Normalized Model Equations for a Constant property

Mixture in Axisymmetric Coordinates

Governing Equations

Vorticity transport

2t ) + o) = (29, D)
ot or WU T 5, \Wla) = Re‘or?  or'‘r
Streamfunction
o1y 15
ar'r Or rdz2
Energy
oT oT oT 1 9 FEc
E + WTE +’Uz£ = __RGP?‘V T+ EE(I)
Definitions
Velocity field
v, = —18%
r 5 0z
oy
Viscous dissipation
_ OVrig  Vrg 0V, v,  Ov,
¢= [(’ar) (r)+(6z) +(6z or

Parameters

Reynolds number

pUR
L

Re =

+ 32_(.0)
022

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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Prandtl number

Pr

v
o
Eckert number

U2

Ec= o,

(2.18)

(2.19)

16




Chapter 3

Impulsively-Started Quasi-1d
Flow

The model equations given in the previous section indicate that, in the
present formulation, the prevailing flow regime within the nozzle is described
in terms of three governing parameters: the Reynolds number Re, the Prandtl
number Pr, and the Eckert number Ec. In order to gain an appreciation for
the impact of these parameters on shear induced heating mechanisms, we
first examine the simplified problem of impulsively started motion over a flat

insulated plate.

This physical setting, which closely approximates the early stage of bound-
ary layer formations at the nozzle walls, is specified as follows. The flat plate
has infinite extent and coincides with the z-axis in the 2D Cartisian = — y
plane. The fluid is at rest for times ¢ < 0, and is impulsively accelerated to a

velocity U at ¢t = 0. The flow is unbounded in the +y direction and remains
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one-dimensional. Under these conditions, the dimensional constant-property

momentum equations reduce to:

ou %
with boundary conditions:
uly=0,t) =0
{ u(y = +oo,t) =U (3-2)

Here, u denotes the streamwise velocity component, and the initial con-

dition may be simply expressed as: u(y,t = 0) = 0.

The solution of the above heat equation for the streamwise velocity com-

ponent is given by the well-known similarity solution[1]:

u(n) = Uerf(n) (3.3)

where 1 = y/v/4vt is the similarity variable, and

erf(n) = —\/2—7? 0" exp(—2?)dz (34)

denotes the error function.

MeanWhile, the dimensional form of the energy equation takes the form:
oT o*T v ,0u,
L g (= 3.5
ot aayz + cp(ay) (3:5)
with boundary and initial conditions respectively given by:
Lly=0,t)=0
Ty —o0)=T,
T(y,t=0)=T, (3.7)

(3.6)
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3.1 Solutions of the Energy Equation

Analytical solutions of the energy equation (3.5-3.7) are sought using two
different techniques. First, we rely a Green’s function approach which is

based on:
(i) enlarging the solution domain to the entire plane —oo < y < 400

(ii) defining the following extension to the velocity field:

(o) = Uer (2L (38)

(iii) exploiting the symmetry of the extended velocity field by recasting the

energy equation as:

or  8*T* v dut, OT U? y?
T o 7 +-C;( ay) —0—8?4' Fpt'exp(-——z-ﬁ) (39)

with boundary and initial conditions respectively given by:
T*(y = to0,t) =T, (3.10)
; T*(y,t=0)=T, (3.11)
An analytical expression for the time-dependent solution to the above

equations is readily expressed using the Green‘s function of the heat equation;

we have:

. U? gt v
| Tt)=T + E/o \/T(Za(t —T) +v7)
y2

x exp(— ydr (3.12)

2Q2a(t —7) +v7)
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While evaluation the above integral is generally cumbersome, simple expres-
sions for the wall temperature, T, = T'(y = 0) = T*(y = 0) may be readily

obtained. The analytical results are summarized by:

14 26 /38 (sin™!(1 — Pr) + I) Pr<2
=4 142 Pr=2 (3.13)
1+ 28 /P In(\/Pr(Pr—2)+Pr—1) Pr>?2

S|

It is interesting to note that the wall temperature is time-independent
and the above expressions do not explicitly depend on the Reynolds num-

ber,due to the absence of a characteristic flow length scale.

In order to obtain solutions for the temperature profile, and to check on
the validity of the above expressions, a similarity variable approach is also

implemented. To this end, we introduce a new similarity variable,

Y
— 3.14
—~ (3.14)
and postulate that the temperature distribution is a function of 3 only, i.e.

T = f(B). Substituting this into Eq. (3.5) yields:

v p
201 TCy exp(——?) =0 (315)

where primes refer to differentiation with respect to 3. Multiplying Eq.

(3.15) by the integrating factor exp(v3%/4a) and collecting terms gives:

2

Usv v

exp(—(5 - 1)) = 0 (3.16)

(el P + o
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Integrating Eq. (3.16) once with respect to § and enforcing the adiabatic
wall constraint f'(0) = 0 yields:

U? 8 1
exp( =)' = - - | exp(=a*(G — =))da (3.17)

In general, Eq. (3.17) is integrated numerically. However, for special val-
ues of Prandtl number, the integration may be easily performed analytically.

Specifically, for Pr = 1, we have:

U2
58 =T+ 501 = erf (D)) (318)
and in normalized form:
T E
;:7) =1+ —25(1 —erf(n)?) (3.19)

Meanwhile, for Pr = 2, we get:

_ 2U2 132
fB)=T,+ o exp(~=-) (3.20)

and in normalized form:

T(n)

— 2 2
T = 1+ 7rEcexp( n°) (3.21)

It is easily verified that the wall temperature predicted using the above ex-

pressions coincides with that obtained using the Green’s function approach.
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3.2 Discussion

Results of the above theoretical analysis are depicted in Figs. (3.1-3.3). Fig.
(3.1) shows normalized temperature profiles for mixtures with different Eck-
ert and Prandtl numbers. In Figs. (3.2) and (3.3), a mixture having the
same heat capacity as water and initially at 295°K is assumed; normalized
and dimensional temperature distributions are plotted for different injection

velocities and different Prandtl numbers.

Figs. 3.1 — 3.3 enable us to clearly visualize the roles of the Eckert and
Prandtl numbers on shear heating during the early stages of boundary layer
formation. In particular, Fig. 3.1 clearly reflects the linear variation of the
normalized wall temperature with Eckert number, while Figs 3.2 — 3.3 reflect
a quadratic dependence of the impulse velocity. In addition, the nonlinear
dependence of peak temperature on the Prandtl number is also illustrated.
The logarithmic divergence of the wall temperature as Pr — oo underscores

a particular concern for mixtures having high Prandtl number.

Finally, it is interesting to note that the shear heating predictions of the
present 1D analysis are only dependent on the Eckert and Prandtl num-
bers. Thus, an explicit dependence on the fluid density is lacking from the
present predictions. Accordingly, the manifestation of shear-induced heating
mechanisms is expected to be similar for incompressible flow conditions char-

acterized by the same Eckert and Prandtl numbers, even if the corresponding
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mixtures have significantly different densities.
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Figure 3.1: Normalized temperature profiles, plotted against the similarity
coordinate 7, for different Eckert numbers and Prandtl numbers. The value

of the Eckert number is indicated.
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similarity coordinate 7, for different injection speeds and Prandt! numbers.
The value of injection velocity is indicated.
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Chapter 4

Axisymmetric Flow

We now turn our attention to the numerical modeling of high-speed injection

in an axisymmetric nozzle. Throughout this section, we shall assume:
(i) an incompressible mixture with constant properties,
(i) that the nozzle has radius R, = 2mm and length L = 20mm, and
(iii) that the nozzle walls are insulated.

Thus, following the discussion of Section 2, we are interested in the simulation

[ of the normalized vorticity transport and energy equation, respectively:
i

ow 0 0 1 0w 0 ,w, 0w

ot o) Tl = 5 GE 5 (D + o) @D
r 8T . 8T 1 _,  Ec
o o T T Rebr’ LT Res (4.2)

The boundary conditions associated with the above system of governing

equations are summarized as follows:




1. At the nozzle inlet, the velocity and temperature distributions are as-
sumed to be known. Furthermore, we assume that the radial velocity
component vanishes at inflow, so that the velocity boundary conditions
is given in terms of a streamwise velocity profile, u,(r). The latter is
used to derive streamfunction and vorticity boundary conditions re-

spectively through:

Yinlr) = [ Cun(Q)d¢ (43)
and
nlr) = =520 (44

Thus, inflow boundary conditions are expressed as:

’éb(T, Z= 0) = "/}in(r)
w(r,z =0) = wi(r) (4.5)
T(r,z=0)=Ty(r)
2. At the nozzle wall, the potential and no-slip velocity conditions are im-
posed, as well as the adiabatic surface boundary condition. We thus
have:

{ Y(r=1,2) = f§ ru,(r)dr

%’f(r:l,z)=%(r=l,z)=0

(4.6)

3. At the centerline, axial symmetry conditions are enforced, and the stream-

function value is arbitrarily set to zero. Accordingly, we have:

{ B 47
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4. At the downstream computational boundary, derivative outflow condi-

tions are imposed; we have

oY o Ow _om T
5;(r,z-20) = E(r,z—%) =3, (r,z2=20)=0 (4.8)

4.1 Inflow and Initial Conditions

Since the fine details of the mixture injection into the nozzle are generally not
known or difficult to determine, impulsively-accelerated flow should be ide-
ally considered. Unfortunately, unlike the 1D theoretical study, this situation
is not easily accommodated in the context of a multi-dimensional numerical
simulation. First, the early stages of growth of viscous boundary layers,
which initially form as infinitely-thin vortex sheets, cannot be adequately
captured using finite grid sizes. Second, the imposition of a flat inlet veloc-
ity profile would unnecessarily burden the computations, since these cannot

handle the associated singular behavior near the nozzle wall.

In order to overcome these difficulties, the initial velocity filed is assumed
to admit a small, but finite-thickness boundary layer at the nozzle wall. The
velocity profile corresponds to the analytical solution given in the previous
section, evaluated at a time significantly smaller than the injection duration.
Moreover, the imposed inflow velocity profile is also taken to coincide with
the same boundary layer solution. A “brute force” approach is then adopted
which calls for decreasing the initial boundary layer until the computed so-

lution is essentially independent of this “free parameter”.
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Meanwhile, two diﬂ"iarent approaches are followed in specifying the initial
temperature distribution and the inlet temperature boundary condition. The
first is analogous to that used for the velocity profile and is based on using
the 1D solution to appropriately fit a thermal boundary layer at the nozzle
wall. The second approach simply assumes a flat inlet temperature profile.
As shown in the computations discussed below, both approaches yield nearly

identical peak temperature predictions.

4.2 Direct Numerical Simulation

Direct numerical simulation of the governing equations is first performed.
This approach is based on accurate and detailed resolution of all relevant
length and time scales using the full equations of motion. To this end, the
vorticity transport and energy equations are first discretized in time using
the 3rd-order Adams Bashforth scheme, while the viscous dissipation term
is treated using the 2nd-order Crank-Nicolson approach. Thus, the time-

discretized vorticity and energy equations are expressed as:

w‘n.+1 s 2 1
- Pn—k = _Nn—k 4.
A7 l;)“/k( +t5 @) (49)
Tt T 2 - ) Ec ,_. "
_—At =—Z’Yk(R k+——RePT‘S k)+_2f€-(q) 4o ) (4.10)

k=0

where
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P= 3 5 (4.11)
w 0w, 0w
T
Rsvr%;+vzg—f (4.13)
_gip_ 10,07, 0T
S=VT= rar(r 63") 52 (4.14)

respectively denote the convective vorticity, vorticity diffusion convective
temperature and thermal diffusion terms, while (o, 1, 72) = (23/12, —16/12,5/12)

are the integration constants of the 3rd-order Adams-Bashforth scheme.

Spatial discretization of the above equations is performed on regular rect-
angular grid of mesh size (Ar,Az). All “internal” spatial derivatives are
treated using second-order centered differences, resulting in the expressions
summarized in Table 4.1. Second-order treatment of temperature boundary
conditions at the wall is performed, but one-sided first-order differences are
used at outflow and the centerline. The standard first-order treatment of the

vorticity boundary condition at the wall is also used.




Table 4.1

Discretized Form of Derivative Terms in Standard Notation

Vorticity Convection

P~ Witti(Ur)itng = wio1(Vs)i-1,
ij

2Ar
Wy j+1(Ur)ij+1 - wz'j—l(vz)ij—l
2. 3 2 ) 4.15
+ 2Az ( )
Vorticity Diffusion
Qi w~ Wit — 2Wij + Wi | Wiyl — Wie1j Wiy
“ Ar? 2r;Ar 2
Witl,j — 2Wij + Wi-1;
: : 4.16
+ Az? ( )
Temperature Convection
Tip1;— Ty Tijo1—Tij
Rij = (0r)ig—=5——" + (v2)i == Ay (4.17)
Thermal Diffusion
g Tip1; — 2T + Ty 4 1Ty —Ticy
Ar? ; 2Ar
T — 2T+ T i
2 : . 4.18
+ N (4.18)

Viscous Dissipation

® ~ 2(((’Ur)i+1,j2;r(’0r)i—l,j)2 + ((U;zi,j)2 + (('llz)i,j+12gz(’uz)i,j__1)2
(vr)i,j+1 - ('Ur)i,j—l (Uz),;ﬂ’j - ('Uz)i—l,j )
* 2Az AT )

(4.19)
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Vorticity-Streamfunction

Virty = 2ij t iy 1%y — iy

Ar2 T; 2Ar
» — 2 R . .
+ Yij+1 Al/izz,; + i1 = —wr; (4.20)
Velocity Field
o 1Y+ 1-¢ij—1
(g = - (4.21)
1Y — i—1,7
(02)s ~ Yot = Yo (422)

T 2Ar




Assuming all quantities known at a given time level, the solution is ad-

vanced by one time step as summarized below:

1. Equation (4.9) is first integrated to yield new values of the vorticity

everywhere except at solid boundaries.

2. Equation (4.20) is inverted using Gauss-Seidel iterations, thus yielding

the streamfunction distribution at the new level.

3. The no-slip boundary condition is imposed using Thom’s approximation,

giving solid wall vorticity boundary conditions.

4. The velocity distribution is determined using Eqs. (4.21 — 4.22), and the

viscous dissipation function at the new time level is computed.

9. The temperature distribution at the new time level is obtained by inte-

grating the energy equation (4.10) and imposing boundary conditions.

4.2.1 Results and Discussion

"The direct simulation code is first applied to predict low-speed water injec-
tion into the nozzle. The latter is discretized on a rectangular grid with
N, = 201 points in the radial direction and N, = 801 in the streamwise di-
rection. A 20m/s injection velocity is assumed, corresponding to a Reynolds
number Re = 41,626. The Prandtl number Pr = 6.616, and the Eckert num-
ber Ec = 0.000324 based on an inlet temperature T, = 295°K. The inlet

and initial velocity and temperature profiles are adapted from 1D analytical
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expressions of Section 3, assuming an inlet/initial boundary layer thickness
din = 50.8um. A 10ms injection duration is simulated using an integration

time step At = 0.002us.

Results of the computations are shown in Figs. 4.1-4.3, which respectively
depict streamwise velocity profiles at different injection times, streamwise
velocity profiles at different downstream cross-sections, and temperature dis-
tributions at different streamwise planes. At early injection times, the figures
illustrate the diffusive growth of the viscous and thermal boundary layers.
For small downstream locations, z < 10mm, the thermal and viscous bound-
ary layers tend rapidly towards a steady-state value, within less than 2ms
after the start of the injection. Even at large downstream locations, steady
state value are reached by the end of the injection period. Examination of
the temperature profiles indicates that, for the present injection parameters,
shear heating mechanisms are extremely small. Peak temperature values,
which are recorded near the nozzle exit, are only 0.18°K higher than the in-
let temperature. It is interesting to note, however, that most of the heating
actually occurs during the early stage of injection, during which the bound-
ary layer is thin. Furthermore, comparison of the temperature profiles at
different streamwise locations shows that the wall temperature rises rapidly
at small downstream locations, where the boundary layer remains thin, and
at significantly smaller rates as we move downstream. As discussed in further

detail below these trends will also be observed even as the injection speed is
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considerably increased and shear heating effects become significantly more

pronounced.

Unfortunately, one major disadvantage in the application of the direct
simulation approach is the high computational overhead associated with the
simulation. For the low injection velocity considered above, a 10ms injec-
tion period required in excess of two weeks to complete on an IBM R6000-
350 workstation. For higher injection velocities, which would require sig-
nificantly finer resolutions, the necessary computational overhead would be
prohibitively high. This would be the case even if more efficient versions of
the computations were implemented, such as fast solvers, implicit integration

schemes, or more accurate spatial discretizations.

In order to overcome this computational difficulty, an alternative ap-
proach is adopted which is based on the parabolized approximation of the
equations of motion. This results in order-of-magnitude savings in the in-
version of the elliptic streamfunction operator, which dominates the over-
all computational cost. Further reduction of CPU requirements is sought
through the implementation of stretched computational grids, which concen-
trate mesh points in the neighborhood of thin computational boundaries.
The construction and implementation of several numerical schemes for the
simulation of the parabolized equations of motion are discussed in Section

4.3 below.
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Figure 4.1: Laminar boundary development in an axisymmetric nozzle. Wa-
ter is injected at 20m/s; the nozzle is 20mm long and has 2mm inner radius.
The plots show normalized streamwise velocity profiles at different times fol-
lowing injection. In each gragh, profiles at different downstream locations
are plotted.




38

z=5.0mm z=14.95mm
1.3 T T T T T T T T T 1.9 T T T T T T T T T
1.0F 1o T 4
0.9} 0.9t 1
0.8} 0.8} 4
------ t=1.0 ms oo t=1.0ms K
0.7} 0.7} \ 4
---- t=2.0 ms ---- 1=2.0 ms \
N 0.6 ——=1=4.0 ms NO.6F ———=1t=40ms % B
> > ,
05k — t=10.0 ms 05k — t=10.0 ms P
0.4l 0.4} t
0.3} 0.3} |
0.2} 0.2}
0.1} 0.1}
0. . . ; . ; ; : . ; o, . . ; . . A . . .
880 582 064 0.86 088 0.90 062 0.4 0.96 0.98 1.00 880 0.52 0.64 0.86 0.88 0.90 0.62 0.5 0.96 0.98 1.00
r r
z=9.975mm z=19.925mm
1.1 T T T T T T T T T 1. T T Y T T T T T T
1.0F 4 1>0r' """""""""""""""" “;"n 4
0.} 4 0.9} N g
\J »
0.8} 4 0.8} \‘ N 1
------ t=1.0 ms \
0.7} 4 0.7} . 4
3 ---- t=2.0 ms L
&So.6f t:‘r.o ms . & 06f - tf4.0 ms W
sl ——— t=10.0 ms . o5k ——— t=10.0 ms S
. A o
0.4t - 0.4t W
0.3}t . 0.3 \ A
9 1)
0.2} \ 0.2} "
0.1 0.1k
0. . . . ; . , . . . 0. , ) . : . . ; . ;
880 082 08+ 0.66 0.68 090 0.2 0.64 065 095 T.00 880 062 064 085 088 0.90 0.52 0.7 096 0.98 1.00
r r

Figure 4.2: Laminar boundary layer development in an axisymmetric nozzle.
Water is injected at 20m/s; the nozzle is 20mm long and 2mm inner radius.
The plots show normalized streamwise velocity profiles at different stream-
wise locations. In each gragh, profiles at different times following injection
are plotted.




z=5.0mm
295.14 T T T T Y T T
295.12F
295.10F
------ t=1.0 ms
< --=- t=2.0ms
X -
& 295.08 L iome
t=10.0 ms
- 295.06}
295.04+
295.02}
295.08 A

L L L L L L L L
80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
r

z=9.975mm
295.16 T T T T T T T
295.14}
295.12f
------ t=1.0 ms
o 29510F e {220 ms
e ———=1{=4.0 ms
. 295.081 ——— t=10.0 ms
295.06}
295.04}
295.02f
L 1 L d. 1 1 1 -"' I
295'08.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
r

295.175 T T T

39

z=14.95mm

295,150

T

285.125

295.100F

295.075}

295.050+

295,025

T T T T T T

------ t=1.0 ms
~--- t=2.0 ms
———1{=40 ms
—— 1=10.0 ms

L s L
295'008.80 0.82 0.84 0.86

1 L 1 i P ‘ L
0.88 0.90 0.92 0.94 0.96 0.98 1.00
r

z=19.925mm
295.18 T T T T T T T T T
295,16}
295.141
295.12¢ ...l t=1.0 ms
< --==- t=2.0ms
g, 295.10F ———1t=4.0 ms
— 205,08l —— t=10.0 ms
295.06}
295,04}
295.02}
" L 2 L L i 1 PR
295'08.80 0.82 0.84 0.86 0.88 090 0.92 0.94 0.96 0.98 1.00
r

Figure 4.3: Thermal boundary layer development in an axisymmetric nozzle.
Water is injected at 20m/s; the nozzle is 20mm long and has 2mm inner
radius. The plots show normalized temperature profiles at different stream-
wise locations. In each graph, profiles at different times following injection
are plotted.




4.3 Parabolized Approximations

The parabolized approximation is motivated by the fact that in thin bound-
ary layer flows, such as those considered here, radial diffusion fluxes dominate
their streamwise counterparts. Thus, the approximation is based on drop-
ping streamwise diffusion terms from the governing equations, resulting in

the system summarized in Appendix A.

Numerical simulation of the parabolized equations of motion is performed
using a stretched grid technique. To this end, the computational (r, z) plane
is stretched in the radial direction only, i.e. using a transformation of the
form: (r,2) — (&, 2). In all the computations performed in this study, the

transformation:

L &pe(l—§)—1

"= exp(a) — 1

(4.23)

is used. Note that this transformation has a free parameter, a, which may
be adjusted depending on the inlet boundary layer thickness and desired
numerical resolution. Once a value of a is selected, a standard rectangular
finite-difference grid is used in the discretization of the (&, z) domain. The
equations of motion in the transformed (&, z) plane are given in Appendix A,

which also discusses the numerical simulation of this equation system.
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4.4 Results and Discussion
4.4.1 Validity of the parabolized approximation

Applications of the parabolized simulation codes starts with an examination
of the validity of the approximation. To this end, steady and unsteady sim-
ulation codes are tested against each other and against the predictions of
direct simulations schemes. The same injection parameters selection in Sec-

tion 4.3 are used.

Comparison of wall temperature and streamwise velocity predictions ob-
tained using the steady parabolized equations and the unsteady parabolized
equations at large injection times (¢ > 10ms) reaveal nearly identical results.
Thus, we omit discussion of the unsteady parabolized equations, and focus
on contrasting predictions of the steady parabolized code and the direct sim-

ulation scheme.

Fig. 4.4 shows the streamwise growth of the momentum boundary layer
as predicted by the steady parabolized simulation scheme. This simulations
are performed on an unstretched square mesh having N, = 401 grid points
in the radial direction and N, = 8001 grid points in the streamwise direc-
tion. Comparison of these results with those of Figs. 4.1-4.2 reveals a very
favorable agreement between both the approaches at large times following

the start of injection. This agreement is not surprising since, as mentioned
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in Section 4.3, the boundary layer thickness has essentially reached its steady

value at the late stages of the simulation.

Further comparison between the two prediction schemes is presented in
Fig. 4.5, which depicts streamwise velocity profiles at z = 19.925mm down-
stream of the nozzle inlet. The profiles are drawn using results of the steady
parabolized approximation and the unsteady direct simulation at ¢ = 10ms
following injection. Again, an excellent agreement between the two ap-
proaches is observed, showing only small deviations between the results. It
is also interesting to note that the steady parabolized approximation pre-
dicts a slightly smaller boundary layer thickness near the nozzle exit. Thus,
the parabolized approximation is not expected to overpredict boundary layer

growth nor underpredict shear-heating effects.
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4.4.2 Further Analysis of Modeling approximation

The efficiency of the parabolized numerical simulation schemes enables de-
tailed study of the free parameters which are part of our modeling approach.
As indicated earlier in this section, the initial and inlet conditions used in the
simulations assume a quasi 1D flow, so that an inlet momentum boundary
layer thickness, and an initial temperature distribution must be provided.
thus, it is desirable to first examine the impact of free parameters on the

results of the simulations before applying the codes in a predictive manner.

This exercise is conducted for high-speed injection of kerosine. Specif-
ically, an injection velocity U = 365m/s and an inlet temperature T, =
293°K are assumed in all the calculations discussed in this section. The
physical properties of the liquid are assumed to be constant, and approx-
imated by their value at the inlet temperature; we use p = 806kg/m3,
¢ = 2093J/kg.°K, k = 0.1488W/m.°K, and v = 2.263 x 10~m2/s. These
injection characteristics are thus characterized by the following values of
Reynolds, Prandtl and Eckert numbers: Re = 322,576, Pr = 25.6, and
Ec=0.217.

The effect of the inlet momentum boundary layer thickness, 8;,, is first ex-
amined. Both steady and unsteady computations are conducted for different
values of 0;,. Results are summarized in Fig. 4.7, which shows steady-state

wall temperature distributions for all cases. A flat inlet temperature profile
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Figure 4.4: Streamwise velocity profiles for the same injection parameters of
Fig. 4.1, computed using steady parabolized simulations. The streamwise
location is indicated.
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is assumed, and the initial temperature distribution is taken to be uniform.
Fig. 4.7 shows that, while the temperature behavior near the nozzle inlet
may be strongly affected by the value of §;,, heating characteristics further
downstream only show a weak dependence on inlet conditions. In partic-
ular, as the inlet momentum boundary layer thickness decreases, the peak
wall temperature reached at the nozzle exit exhibits small variation with
din- Specifically, when the inlet momentum boundary layer thickness be-
comes of the order of 1um or smaller, deviations in the peak temperature
within the field are less than 5°K. This deviation is a very small fraction
of the total variation of the wall temperature, which increases by more than
140°K across the length of the nozzle. Consequently, the effect of the inlet
momentum boundary layer thickness may be safely absorbed by consistently
decreasing d;, until peak temperature predictions are essentially independent

of selected values.

In order to further support this assessment, the predictions of steady and
unsteady parabolized approximations are tested against each other. This
exercise is summarized in Fig. 4.8 which shows instantaneous wall tempera-
ture distributions for the same conditions summarized above, starting with
an inlet momentum boundary layer thickness 6;, = 1.29m. The computed
results indicate that, at early stage, a near-uniform heating of the fluid occurs
except near the nozzle inlet where spatial variations of the boundary layer

thickness are important. Thus, during early stages of injection, the heating
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at large downstream locations occurs in a quasi one-dimensional fashion, as

assumed in the analysis of section 3.

For larger times, ¢ > 1.5 ms, the thermal and viscous boundary layers
reach their steady state values in the entire nozzle. Comparison of the wall
temperature distribution for ¢ > 1.5 ms with corresponding steady state pre-
dictions (Fig. 4.7) reveal nearly identical results. An isolated comparison
is thus omitted. since the time interval required to reach a steady-state is
smaller than the injection duration of interest, the application of a steady
analysis to the prediction of peak temperatures proves sufficient. However,
the application of unsteady simulation codes is still performed in most ap-
plications described in this work, primarily as an additional means of check-
ing the computed predictions. This constitutes a valid approach since, as
explained in Appendix A, steady and unsteady simulation codes rely on dif-

ferent discretization and integration methodologies.

Finally, the impact of inlet thermal profile and initial temperature distri-
bution is analyzed. To this end, predictions based on a flat inlet temperature
profile and uniform initial temperature distribution are contrasted to those
obtained using the quasi-1D results to prescribe the inlet profile and initial
distribution. The comparison, performed using steady parabolized approx-
imation with &;, = 1.29um, is shown in Fig 4.9. The figure indicates that,

despite significant differences at small downstream locations, steady state
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predictions of the peak wall temperature near the nozzle exit are weakly
sensitive to inlet conditions. When coupled with the results of the above
analysis, this enables us to conclude that peak temperature predictions are

essentially unsensitive to both thermal and viscous inlet conditions.



4.4.3 Shear Heating of LP 1846 during High-Speed In-
jection

In this section, the parabolized simulation schemes are applied to charac-
terize shear induced heating during high-speed injection of liquid monopro-
pellant LP 1846. In the computations of this section, an inlet temperature
T, = 298°K is considered in all cases. Furthermore, the physical properties of
LP 1846 are assumed constant and approximated by their value at the injec-
tion temperature (see Section 5, below). Specifically, we use p = 1,400kg/m?,

¢p = 2,300J/kg.°K, k = 0.15W/m.°K, and v = 4.988 x 10~5m?/s.

The impact of injection velocity, is studied by considering four different
values: U = 100m/s, 200m/s, 300m/s, 400m/s. The corresponding injec-
tion characteristics are respectively characterized by the following Reynolds-
Eckert number pairs: {Re = 40096, Ec = 0.014}, { Re = 80191, Ec = 0.058},
{Re = 120287, Ec = 0.13}, and {Re = 160384, Ec = 0.23}. Since constant
property models are applied, all cases are characterized by the same Prandtl

number, Pr = 109.4.

Results of steady computations are summarized in Fig. 4.10, which shows
the wall temperature distribution for all four cases. As in Section 4.4.2, the
results are compared to predictions of the unsteady computations in order
to check their validity. An illustration of this exercise is given in Fig. 4.11,

which shows instantaneous wall temperature distributions for an injection
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Figure 4.6: Wall temperature distributions during high-speed injection of
kerosine with U = 365m/s and T, = 293°K. The computations are per-
formed using the steady parabolized approximation on a stretched grid woth
N, = 401 points in the radial direction and N, = 8001 points in the stream-
wise direction. The grid stretching parameter a = 6.5, amd a flat inlet tem-
perature profile is imposed. The inlet momentum boundary layer thickness
0in is indicated.
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velocity of 300m/s. For large times following injection, ¢ > 1.33ms, the wall
temperature distribution in the unsteady computation coincides with steady
state prediction. Thus, a steady field is rapidly reached, well-before the end

of injection period.

The computations shown in Fig. 4.10 also reflect the trends of quasi 1D
analysis. In particular, the predictions also exhibit a quadratic dependence
on the injection velocity. Significant heating of the mixture, with tempera-
ture increases greater than a 100°K,, are predicted when the injection velocity
exceeds 200m/s. Thus, for these injection scenarios, premature ignition of

the mixture due to severe shear heating is likely to occur.

It is interesting to note that shear heating characteristics for LP 1846
are of the same order as that computed for kerosene. This similarity may
be observed by comparing Figs. 4.10 and 4.7. The comparison reveals that
the peak wall temperature for a 300m/s injection of LP 1846 is close to that
achieved for kerosene injection at 365m/s. Thus, shear heating mechanisms

of LP1846 are more pronounced than those of kerosene.

It is also interesting to note that the 300m/s injection of LP 1846 is char-
acterized by a smaller Eckert number than kerosene injection at 365m/s, and
that the inlet temperatures in both cases are nearly identical. On the other

hand, the Prandtl number of kerosene is significantly smaller than that of LP

93




1846, which may explain the more pronounced heating effects observed in the
latter case. Further discussion of the role of Prandtl, Eckert and Reynolds

numbers is provided in Section 5 below.

4.4.4 Effect of Wall Heat Transfer

Finally, the impact of wall heat transfer on peak temperature prediction is
investigated. We use a simplified model in which wall heat transfer is taken
into account through a convection heat transfer coefficient. Thus, the sim-
plified model ignores the thermal resistance of finite thickness nozzle walls,
and also ignores the associated heat storage capacity which may play an
important role during the flow transient. Consequently, the model assumes
that the nozzle walls are extremely thin and that the limiting heat transfer
mechanism from the liquid to its surroundings is due to convection from the

nozzle’s outer boundaries.

In the computations, convection heat transfer from the nozzle walls is
incorporated by modifying thermal boundary condition at the nozzle radius.
The modified boundary conditions, which expresses the continuity of the heat

flux, is written as:

or
—kE[TZRo = h(TI7'=Ro - TOO) (4-24)

where k is the thermal conductivity of the mixture, h is the heat transfer

coefficient and T, is the far-field temperature of the surrounding fluid. In all
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computations, we assume that the far-field temperature of the surrounding
fluid coincides with the inlet mixture temperature, i.e. T, = T},. Substituting

this assumption into Eq. (4.24) and normalizing the resulting expression, we

get:

=1 = NuT(r=1)- 1) (4.25)
where

Nu = M (4.26)

is the Nusselt number based on the mixture’s thermal conductivity. Note that
insulated wall conditions may also be simulated simply by setting Nu = 0,
in which case Eq. (4.25) reduces to the homogeneous Neumann Boundary

condition.

High speed LP 1846 injection experiments are conducted for different
values of the heat transfer coefficient. We select three characteristic values
of the heat transfer coefficient, h = 20W/m?.°K, h = 100W/m?.°K, and
h = 500W/m?.°K. These values are respectively representative of free con-
vection conditions in air, forced air cooling at low speed, and forced liquid
cooling at moderate speed. The corresponding Nusselt numbers defined by

Eq. (4.26) are Nu = 0.267, Nu = 1.33, and Nu = 6.67 respectively.

Computed results are shown in Figs. 4.11-4.13, which respectively show

peak temperature distributions for LP 1846 injection at U = 100m/s, U =
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200m/s,, and U = 300m/s. In each plot, curves are drawn for insulated wall
conditions (Nu = 0) and for three Nusselt number values specified above.

Examination of these predictions reveals that:

1. For very high injection speed (U = 300m/s) wall heat transfer does not
significantly reduce peak temperature predictions even at high Nus-
selt number. Thus, conventional nozzle wall cooling means may not
constitute an effective means of minimizing the likelihood of mixture

preignition.

2. For low Nusselt number, Nu = 267, the computed peak temperatures
are very close to those obtained assuming adiabatic wall conditions.
Accordingly, natural heat convection from small diameter nozzles is

not expected to significantly affect peak temperature predictions.

3. Large values of the heat transfer coefficient may appreciably reduce peak
temperatures in thin walled nozzles whenever the injection velocity is
not extremely high. In these situations, forced cooling techniques may
be especially tailored in order to effectively minimize the risk of mixture
ignition.

It is finally emphasized that, when wall heat transfer is accounted for, the
peak temperature achieved at a given streamwise location may not always
coincide with the wall temperature. Generally, as heat losses increase, the
maximum temperature location moves away from the wall into the thermal

boundary layer. This effect is illustrated in Figs 4.14-4.15, which respectively
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show radial temperature profiles at the nozzle exit for injection velocities
U = 100m/s and 300m/s. Consequently, unlike insulated wall conditions,
the peak temperature distributions plotted in Figs. 4.11-4.13 do not always

correspond to wall temperature distributions.
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formed using the steady parabolized approximation on a stretched grid with
a stretching parameter a = 6.5, N, = 401 points in the radial direction and
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Figure 4.11: Steady state peak temperature distributions for high-speed in-
Jection of LP 1648 with T, = 298°K, U = 100m/s, and four different Nusselt
number Nu = 0, Nu = 0.267, Nu = 1.33, and Nu = 6.67. The com-
putations are performed using the steady parabolized approximation on a
stretched grid with a stretching parameter a = 6.5, N, = 401 points in the
radial direction and N, = 8001 points in the streamwise direction.
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Figure 4.12: Steady state peak temperature distributions for high-speed in-
Jection of LP 1648 with T, = 298°K, U = 200m/s, and four different Nusselt
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putations are performed using the steady parabolized approximation on a
stretched grid with a stretching parameter a = 6.5, N, = 401 points in the
radial direction and N, = 8001 points in the streamwise direction.
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Figure 4.13: Steady state peak temperature distributions for high-speed in-
jection of LP 1648 with T, = 298°K, U = 300m/s, and four different Nusselt
number Nu = 0, Nu = 0.267, Nu = 1.33, and Nu = 6.67. The com-
putations are performed using the steady parabolized approximation on a
stretched grid with a stretching parameter a = 6.5, N, = 401 points in the
radial direction and N, = 8001 points in the streamwise direction.
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Figure 4.14: Steady state radial temperature profile at the nozzle exit for
high-speed injection of LP 1648 with T, = 298°K, U = 100m/s, and four
different Nusselt number Nu = 0, Nu = 0.267, Nu = 1.33, and Nu = 6.67.
The computations are performed using the steady parabolized approximation
on a stretched grid with a stretching parameter a = 6.5, N, = 401 points in
the radial direction and N, = 8001 points in the streamwise direction.
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Chapter 5

Variable Mixture Properties

In this section, the constant-properties assumption is relaxed and shear heat-
ing mechanisms are examined for a mixture with temperature-dependent vis-
cosity and thermal conductivity. The nozzle geometry and injection regime
of interest are identical to those considered in the previous section. However,
the accommodation of a variable property mixtures necessitates a signifi-
cant change both in the governing equations (given in section 5.1) and in
the corresponding numerical simulation schemes. The latter are discussed
in Appendix B, which summarizes both steady and unsteady schemes for
the simulation of the parabolized equations where the temperature depen-
dence of the viscosity and thermal conductivity may not be exactly known.
In section 5.3, the computational codes are applied to predict shear-induced
heating of liquid monopropellant LP 1846 for different injection speeds, inlet

temperatures, and wall cooling conditions.
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5.1 Formulation

As in Section 4, we assume that the mixture is an incompressible liquid,
and focus on the same injection parameters and nozzle geometries consid-
ered there. However, the viscosity and thermal conductivity of the mix-
ture are now allowed to vary with temperature. This generalization does
not necessitate any changes in the basic modeling of the flow domain or
boundary conditions. Furthermore, all kinematical relationships are left un-
affected. Specifically, vorticity-streamfunction relationships and the viscous
dissipation function definition introduced in previous sections continue to
hold. Thus, we limit our discussion to a simple statement of the vorticity
transport and energy conservation equations, whose form changes in order

to accommodate the desired extension.

Using the same normalization conventions introduced in Section 2, and

introducing the following normalized viscosity and thermal conductivity def-

initions,
V= :((T)) (5.1)
. _ k(D)
k* = IE(TO) (5.2)

where ~ denotes dimensional quantities, the vorticity transport and en-

ergy conservation equations are respectively expressed as:
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Here, the Reynolds and Prandtl numbers are based on the viscosity and
thermal conductivity measured at the inlet mixture temperature, i.e.
UR
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The applications discussed in this section are motivated by a desire to char-
acterize the likelihood of preignition due to shear-induced heating of liquid
monopropellants during high-speed injection; LP 1846 will be specifically se-
lected in all applications. For this mixture, the dependence of the dynamic

viscosity on temperature may be expressed as:

D
i=Ce —
K XP<T__ »

) (5.7)

where i is the viscosity measured in centipoise(cp), T is the temperature mea-

sured in Kelvin, T,ef = 164°K is a reference temperature while C = 0.16773




cp and D = 502.52°K are dimensionalconstants. Unfortunately, the depen-
dence of the thermal conductivity of LP-1846 on the prevailing temperature
is not known, and only a single value k(T = 298°K) = 0.15W/m.°K is re-

ported in the literature.

In order to tackle the uncertainty regarding temperature-related vari-
ations of the thermal conductivity, two modeling approaches are adopted
in the following computations. The first modeling approach is based on
the observation that in most liquids, variations of the thermal conductiv-
ity are much smaller than those of the dynamic viscosity. Specifically, for
most liquids, the dynamic viscosity decreases rapidly with increasing tem-
perature, with corresponding small variation in the thermal conductivity.
Accordingly, the Prandtl number is expected to drop appreciably with in-
creasing temperature. Thus, the first model calls for treating the thermal
conductivity as temperature-independent, and using the reported value for
a mixture at 298°K. Since both the density and heat capacity of LP-1846
(cp = 2300J/kg°K) vary slightly with temperature, the thermal diffusivity is
consequently constant and the first model is called the uniform Peclet num-

ber model.

The second modeling approach is motivated by the theoretical findings
of Section 3 and the simulation of section 4, which indicate that, other pa-

rameters being equal, shear heating effects tend to be significantly more pro-
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nounced for mixtures having higher Prandtl number. Thus, the second model
conservatively assumes that the thermal conductivity (and consequently the
thermal diffusivity) admits a temperature dependence which is similar to
that of the dynamic viscosity. Thus, the second model is called the uniform
Prandtl number model. It is expected to yield more conservative estimated
peak temperatures since it ignores the potential decrease in the Prantle num-
ber with increasing temperature. Both models are evaluated in the simula-

tions discussed below.

5.3 Application of LP-1846

Simulation schemes accommodating variable-property mixtures are applied
to re-examine the predictions shown in Section 4.4.3. High-speed injection of
LP-1846 is once again considered, with injection velocities, U = 100m/s,
U = 200m/s, U = 300m/s, and U = 400m/s. In all cases, an injec-
tion temperature T, = 298°K is assumed. These injection experiments are
respectively characterized by the following Reynolds-Eckert number pairs:
(Re = 40096, Ec = 0.014), (Re = 80109, Ec = 0.058), (Re = 120287,
Ec = 0.13), and (Re = 160384, Ec = 0.23), and by a Prandtl Pr = 109.4.
All dimensionless groups are based on properties evaluated at the injection

temperature. Unless otherwise stated, adiabatic wall conditions are assumed.

Results of the computations are summarized in Figs. 5.1 and 5.2, which

69




respectively show steady state wall temperature distributions obtained using
the uniform Peclet and Prandt] number models. As before, the validity of
these predictions are checked against those of unsteady computations. Since
a similar agreement to the observed in Section 4.4 is again observed, results

of this exercise are omitted.

Comparison of the present results with those obtained in Section 4.4.3

are summarized as follows:

(1) For moderate injection speeds, U < 200m/s, the predictions of the uni-
form Peclet number model are very close for those obtained assuming
constant properties. At higher injection speeds, the larger temperature
variations induced by intense shear heating of the mixture cause a sig-
nificant deviation between the predictions. The uniform Peclet number
model predicts lower steady state peak temperatures than the corre-
spondin\g constant property simulation. The nature of this deviation
is not surprising since the viscosity decreases with increasing tempera-
ture, resulting in a drop in the Prandtl number. Thus, by neglecting the
temperature dependence of the viscosity, the constant property model

yields more conservative estimates of shear induced heating effects.

(2) When the Prandtl number is artificially held constant, an unrealistically
large shear heating of the mixture is predicted. Figure 5.2 shows that
the uniform Prandtl number model yields peak temperature which,

for large injection speeds, may be twice as large as those predicted
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by the other two models. These temperature increases are deemed
unrealistic since, as previously mentioned, the thermal conductivity
drops slightly with increasing temperature while the viscosity decreases
more substantially. Thus, by prescribing a temperature dependence of
the thermal conductivity which is similar to that of the viscosity, the
uniform Prandtl model generally yields overly conservative estimates
of shear heating effects and should not, therefore, be relied upon as a

reliable predictive tool.

Following the above discussion, only the uniform Peclet number model is

used in the computations presented below.

5.3.1 Effect of Wall Heat Transfer

The impact of wall heat transfer is analyzed in a similar fashion to that
adopted in constant property simulations. We use the uniform Peclet num-
ber model and apply steady parabolized approximation to predict shear heat-
ing with heat transfer conditions characterized by the following coefficients:
h = 20W/m2°K, h = 100W/m2.°K, and h = 500W/m?°K. Note that,
since a uniform Peclet number model is used, the thermal conductivity is
taken to be constant. Consequently, the Nusselt number definition given in

Section 4.3 also holds, and modification of the adiabatic wall condition is

performed in an identical manner to that described there.
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Results of the computations are summarized in Figs. 5.3 — 5.5, which
show that peak temperature distributions for high speed LP 1846 injection
with T, = 298°K, and U = 100m/s, U = 200m/s, and U = 300m/s. Ex-
amination of these predictions confirm earlier expectations regarding both
the role of heat transfer and the effect of variable properties. Specifically,
all the trends established using the constant-property model are once again
observed. Moreover, comparison of the results of the uniform Peclet number
and constant-property model are also in agreement with adiabatic wall pre-
dictions. In particular, when the injection speed is low, results of the uniform
Peclet number model are very close to those obtained using constant-property
model. For higher injection speeds, temperature variations are significantly
more pronounced and the uniform Peclet number model yields smaller peak
temperature predictions than those obtained using constant-property simu-

lations.

5.3.2 Effect of injection temperature

Finally, the effect of inlet temperature is investigated. We consider three
injection speeds, U = 100m/s, U = 200m/s, and U = 300m/s, and assume
adiabatic nozzle wall conditions. Results of steady parabolized approxima-

tions are shown in Figs. 5.6 — 5.8, which respectively show wall temperature

distributions for three inlet temperatures, T, = 278°K, T, = 298°K , and
T, = 318°K.
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For low injection speed, U = 100m/s, the effects of shear-induced heating
are essentially similar for all inlet temperatures. For these injection charac-
teristics, moderate heating in the thermal boundary layer occurs, and the
wall temperature distributions for different cases appear to be shifted ver-
tically as the inlet temperature is varied. This result is not surprising, and
is in agreement with previous results, since the temperature distributions —

and consequently the viscosity — do not exhibit large variations.

At higher injection speeds, U = 200m/s, variable viscosity effects start
becoming more pronounced. Figure 5.7 indicates that shear heating of the
mixture is more substantial as the inlet temperature is decreased. Note that,
for lower inlet temperatures, the inlet viscosity of the mixture is higher.
Therefore, shear stresses and viscous dissipation are also higher; this results
in larger wall temperature increases. This trend can also be interpreted in
terms of the expectation, established earlier in the context of quasi 1D flow
and constant-property simulations, that shear heating effects are pronounced
for mixtures with higher Prandt! number. The present results are consistent
with this trend, since the inlet Prandtl number increases with decreasing

temperature.

Another important observation is that, at high injection velocities, all

similarity between wall temperature distributions is lost as the inlet temper-
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ature developed at low injection temperatures may exceed that corresponding
to higher inlet temperature. Further examination of the computations indi-
cates that these trends are due to different development of both the thermal
and viscous boundary layers. Specifically, as illustrated in Figs. 5.9-5.10,
when intense shear-heating of the mixture occurs, both the structure and
spatial evolution of the boundary layer exhibit significant differences as the

inlet temperature is varied.

"The observed dependence of shear heating effects on the injection temper-
ature appears to pose a significant challenge to the evaluation of the likelihood
of mixture ignition. However, it should be noted that this dependence admits
a consistent trend, namely that injection characteristics having higher inlet
Prandtl number exhibit higher temperature increases. Thus, conservative es-
timates of shear heating effects can still be obtained by focusing the analysis

on injection conditions which are characterized by the highest anticipated

Prandtl number.

o
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Figure 5.1: Steady state wall temperature distribution for high-speed injec-
tion of LP 1648 with T, = 298°K at four difference velocities, U = 100m/s,
U = 200m/s, U = 300m/s, and U = 400m/s. The uniform Peclet num-
ber model is adopted, and the computations are performed using the steady
parabolized approximation on a stretched grid with a stretching parameter
a = 6.5, N, = 401 points in the radial direction and N, = 8001 points in the
streamwise direction.
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Figure 5.2: Steady state wall temperature distribution for high-speed injec-
tion of LP 1648 with T, = 298°K at four difference velocities, U = 100m/s,
U = 200m/s, U = 300m/s, and U = 400m/s. The uniform Prandt] num-
ber model is adopted, and the computations are performed using the steady
parabolized approximation on a stretched grid with a stretching parameter
a = 6.5, N, = 401 points in the radial direction and N, = 8001 points in the
streamwise direction.
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Figure 5.3: Steady state peak temperature distribution for high-speed injec-
tion of LP 1648 with T, = 298°K, U = 100m/s, and four different Nusselt
number Nu = 0, Nu = 0.267, Nu = 1.33, and Nu = 6.67. The uniform
Peclet number model is adopted, and the computations are performed using
the steady parabolized approximation on a stretched grid with a stretching
parameter a = 6.5, N, = 401 points in the radial direction and N, = 8001
points in the streamwise direction.
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Figure 5.4: Steady state peak temperature distribution for high-speed injec-
tion of LP 1648 with T, = 298°K, U = 200m/s, and four different Nusselt
number Nu = 0, Nu = 0.267, Nu = 1.33, and Nu = 6.67. The uniform
Peclet number model is adopted, and the computations are performed using
the steady parabolized approximation on a stretched grid with a stretching
parameter a = 6.5, N, = 401 points in the radial direction and N, = 8001
points in the streamwise direction.
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Figure 5.5: Steady state peak temperature distribution for high-speed injec-
tion of LP 1648 with T, = 298°K, U = 300m/s, and four different Nusselt
number Nu = 0, Nu = 0.267, Nu = 1.33, and Nu = 6.67. The uniform
Peclet number model is adopted, and the computations are performed using
the steady parabolized approximation on a stretched grid with a stretching
parameter a = 6.5, N, = 401 points in the radial direction and N, = 8001
points in the streamwise direction.




Tw (°K)

450 I ] ! i I 1 ! I

430} .

410 -

390+ --- Te=278 %k -]

- —-Te=298 °k
370F — Te=318 % .

T

350 4

330 — -
310 -----"""TTTTTTTTTT T o m s .

290F-- -

Figure 5.6: Steady state peak temperature distribution for high-speed injec-
tion of LP 1648 with U = 100m/s, and three different inlet temperatures
T, = 278°K, T, = 298°K, and T, = 318°K. The uniform Peclet num-
ber model is adopted, and the computations are performed using the steady
parabolized approximation on a stretched grid with a stretching parameter
a = 6.5, N, = 401 points in the radial direction and N, = 8001 points in the
streamwise direction.
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Figure 5.7: Steady state peak temperature distribution for high-speed injec-
tion of LP 1648 with U = 200m/s, and three different inlet temperatures
T, = 278°K, T, = 298°K, and T, = 318°K. The uniform Peclet num-
ber model is adopted, and the computations are performed using the steady
parabolized approximation on a stretched grid with a stretching parameter
a = 6.5, N, = 401 points in the radial direction and N, = 8001 points in the
streamwise direction.
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Figure 5.8: Steady state peak temperature distribution for high-speed injec-
tion of LP 1648 with U = 300m/s, and three different inlet temperatures
T, = 278K, T, = 298°K, and T, = 318°K. The uniform Peclet num-
ber model is adopted, and the computations are performed using the steady
parabolized approximation on a stretched grid with a stretching parameter
a = 6.5, N, = 401 points in the radial direction and N, = 8001 points in the
streamwise direction.
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Figure 5.9: Steady state streamwise velocity profiles at different streamwise
locations for high-speed injection of LP 1846 with U = 300m/s, and two
different inlet temperature T, = 278°K (dashed line), and T, = 298°K (solid
line). The uniform Peclet number model is adopted, and the computations
are performed using the steady parabolized approximation on a stretched
grid with a stretching parameter a = 6.5, N, = 401 points in the radial
direction and N, = 8001 points in the streamwise direction.
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Figure 5.10: Steady state temperature profiles at different streamwise loca-
tions for high-speed injection of LP 1846 with U = 300m/s, and two differ-
ent inlet temperature T, = 278°K (dashed line), and T, = 298°K (solid line).
The uniform Peclet number model is adopted, and the computations are per-
formed using the steady parabolized approximation on a stretched grid with
a stretching parameter a = 6.5, N, = 401 points in the radial direction and
N, = 8001 points in the streamwise direction.




Chapter 6

Summary and Conclusions

Shear-induced heating of a liquid monopropellant during high-speed injection |

in an axisymmetric nozzle is analyzed numerically. The numerical schemes
are based on a finite-difference discretization of the vorticity transport and
energy equations. Steady and unsteady codes are applied to predict peak
temperatures of LP1846 during high-speed short-duration injection in a noz-
zle having 4mm diameter and 2mm length. When adiabatic wall condi-
tions are assumed, computed results reveal a quadratic dependence of the
peak temperature on injection velocity. Significant temperature increase, of
the order of 100°K or more, is predicted for injection velocities higher than
200m/s. Thus, for such injection conditions, mixture preignition is likely to

occur.

Wall heat transfer, modeled in terms of a wall heat transfer coefficient,
h, is also analyzed. Three values h = 20, 50, and 500W/m?2.°K, which are

representative of free convection conditions in air, forced air cooling at low
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speed, and forced liquid cooling at moderate speed, are selected in the analy-
sis. When the injection speed is very high (U > 200m/s), wall heat transfer
dies not significantly reduce peak temperature predictions even for high heat
transfer coefficient. In addition, for low heat transfer coefficient, peak tem-
peratures are close to those obtained assuming adiabatic wall conditions.
Thus, free convection heat transfer does not significantly reduce the likeli-
hood of mixture ignition. On the other hand, large values of the heat transfer
coefficient may appreciably reduce peak temperatures in thin walled nozzles
whenever the injection velocity is not extremely high. In these situations,
forced cooling techniques may be especially tailored in order to effectively

minimize the risk of mixture ignition.

The impact of a temperature-dependent viscosity is also examined. While

all trends established using a constant property model are once again ob- .

served, the dependence of viscosity on temperature may significantly affect
shear heating predictions. Computed results show that, for moderate injec-
tion speeds, temperature predictions of both constant and variable viscosity
models are very close. However, for high injection speeds, peak temperatures
obtained using a variable-viscosity model are smaller than those obtained
using constant property simulation. This effect is related to the decrease of
viscosity and Prandtl number with increasing temperature. Variation of the
mixture inlet temperature also affects temperature predictions. In particu-

lar, it is found that shear heating effects are more pronounced for smaller
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inlet temperature, i.e. when the inlet Prandtl number is larger.

Finally, it is worthwhile summarizing the modeling approaches used in

the present analysis and the scope of the present computations.

(1) In all multi-dimensional simulations discussed here, we have focused
on laminar heating in a small-diameter high-speed nozzle. A bound-
ary layer of vanishingly small thickness is simulated by systematically
decreasing the inlet boundary layer thickness until the results become

effectively indensitive to this parameter.

(2) In all cases considered, a small constant-diameter axisymmetric is as-
sumed. The nozzle diameter and length are kept fixed, d = 4dmm,
and R = 2mm, respectively. Due to the short length of the nozzle,
the boundary layer remains much thinner than the nozzle radius for
all flow conditions analyzed above. Consequently, no significant spatial
acceleration of the mixture within the potential core was observed. The
potential contribution of this effect to viscous heating of the mixture
should be carefully analyzed, especially if nozzles having much smaller

diameter than those considered here are selected.

(3) As mentioned above, the present analysis of wall heat transfer is based on
selection of a heat transfer coefficient, . Inherently, the corresponding

models assumes that the nozzle walls are very thin; therefore, their
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heat storage capacity is ignored as is their contribution to the overall
thermal resistance to heat flux. For thick-walled nozzles, or for nozzles
embedded within large systems, the present modeling approach should

be appropriately altered.
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Part 11

Direct Numerical Simulation of
Turbulent Flow
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Chapter 7

1D Solution of Turbulent Flow
between Parallel Plates

As discussed in the Introduction, boundary layer transition is expected to
occur for long-duration injection or when the nozzle length is large. In order
to study shear heating mechanisms within a transitional or turbulent flow
environment, one must first characterize the mean flow and the fluctuations
around the mean flow. The objective of this chapter is to construct solutions
for the mean temperature field, using well-established empirical correlations
for the mean velocity field. Temperature fluctutations around the mean will

be the focus of subsequent chapters.

7.1 The Mean Temperature Distribution

The starting point for determining the mean temperature distribution con-

sists of the Reynolds-averaged equations of motion. We focus our attention on
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fully-developed turbulent flow in a two-dimensional channel, and assume that
the channel plates have infinite extent in the streamwise z— direction, and
the cross-stream z— direction. For steady, incompressible, constant property

boundary flow, z-momentum and energy conservation equations are:

Ou Ou  ldp &%

’lL%‘f"U'g’y——’-;E-}'V-a? (71)
T
pcp(u%% + vg—y) =kVT + @ (7.2)

where, u and v are the velocity components in the z and y directions, respec-
tively, p is pressure, p is density, ¢, is the specific heat at constant pressure,
k is the thermal conductivity, T is temperature, and @ is the viscous dissi-

pation function.

By taking the time average of the energy conservation equation, we obtain
the following governing equation for the mean temperature profile in a fully-

developed turbulent channel flow:

_HT _BT _ 6qt ou
PCp (u 5 T v-a—y—) =% + 7 3y (7.3)

Here, 7; denotes the total shear stress while ¢, represents the total heat flux.

q; and 7; are respectively given by:

= 0 _
t Hay puy

oT —
g =- (ka_y - pcp'u’T’)
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and consist of contributions due to molecular diffusion and turbulent mixing.

Next, we invoke the Boussinesq analogy for eddy viscosity and eddy con-

ductivity. We thus have:

ot
Tt = (#+ut)@

oT
= —(k+ k)=
gz ( t)ay

Here, neither y; and k, is a property of a fluid; their ratio defines a dimen-

sionless group, the turbulent Prandtl number:

Cplit
Pr, = 27
T kt

Note that Pr; is of order unity. In all our calculations, Pr; is taken to be

0.9.

Substituting the Boussinesq analogy into the mean energy equation, we

obtain:
T _oT om\’ 8 oT
PCy (u% + ’U*gg) = (p+ ) (55) + a—y' ((k + kt)gg;) (7.4)
Since 8T /0z = 0 and T = 0 for fully-developed flow, the above equation
reduces to:
d oT ou\*
EE ((k + kt)é?y_) = ""(M + l)it) (‘a_y) (75)

Recall that,

pt = p(l +ep/v)
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k+kt=k(1+€}[/a)

where €y is the eddy diffusivity for momentum transfer, while ¢ is the eddy

diffusivity for heat transfer. They are respectively defined by the following

expressions:
ou _ i
EM— = —pu'v
PeM By P
eg— = —v'T’

Substituting the above relationships into the time-averaged energy equa-

tion, we get:
o oT 7 ou\’
=-( — .
o5 ((a-i—eH)ay) pcp( +ex/v) (By) (7.6)
The temperature boundary conditions are:
{ Grlv=y. =0 (7.7)
Tly= =T,

Integrating the energy equation once with respect to Y, we have

T g 7 /y ou\’
—+ 2 =_" — | d 7.
(+emg + o =—2 [0t (5 ) d (73)
where g,, is the heat flux at the wall, which is determined from a global energy

conservation constraint. Integrating the energy equation from the wall to the

center line, we get:

o == [ 1t + /) (gg)zdy | (7.9)
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Integrating the energy equation twice with respect to y, we have

o gw (v 1
T-T,= — ——/ dy
pcp Jo a+eg

_ ;‘é';/o e (/ (1+en/v) ( 1:) dyz) dyy (7.10)

The above expression is normalized by introducing friction velocity

Uy = [T/ P

where 7, is the wall shear stress, and defining the following dimensionless

groups,

| I

ut =

Uy
U,
yt="2
14
(T, — T)u,
9w/ (pcp)

Using this normalization convention, the non-dimensional temperature dis-

Tt =

tribution is given by:

yt 1 3
T+ = /0 ———-—-—.— T e dy++£l_l‘i

R Gu
2
X /Oy+ —%lneu (/0y+(1 + exr/V) (g:—i) dy+> dyt  (7.11)
where,
2
5;"2 —_ /0 yj(1+eM/l/) (%) dy+ (7.12)

In oder to solve the above equation, we need to estimate the value of
€m /v, which depends on the mean velocity profile. For simplicity, a two-

layer model for the mean velocity distribution is used. In this model, the
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turbulent boundary layer consists of two distinct regions: a viscous sublayer,
in which v > €j, and a fully turbulent region, where €3, > v. In the viscous

sublayer, the mean velocity is given by:
ut =y* (7.13)

while in the outer layer the velocity profile follows (Kays and Crawford 1980):

ut =25In (y+ ]‘lﬂl2f“(}§h_;;’/)}/l]};]> +5.5 (7.14)

Note that the outer layer approaches

ut =25Iny* +55 (7.15)

near the wall, and it has zero slope at the center line, i.e. at y = k. The crit-

ical value of y* for the two-layer model is taken to be 12 in our calculations.

Next, the value of €p/v in the viscous sublayer is evaluated by incorpo-
rating the Prandtl mixing length model
ou

9y
with the Van Driest proposition,

€M=l2

I = ry[l — exp(—y™/AT)]

where constant At is an emperically-determined effective sublayer thickness.
In our calculations, A* is taken to be 25.0 (Kays and Crawford 1980). The

resulting expression of €p//v in the viscous sublayer is:

oo 1 Y
em/v = (ky™) (1 exp(y+/A+)) (7.16)
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Note that the expression of €j7/v in the sublayer is based on the mixing length
model. In the region toward the centerline of the channel the assumption of
a constant mixing length, which is recommended for the external boundary
layers, is no longer appropriate. Thus, we rely on the empirical equation
proposed by Riechardt, which is valid for the entire region outside of the
viscous sublayer,

h— y) h—

en/v = (1 + [14+2(— h )2] (7.17)

Here, h denotes the distance between the plate and central line. Using the
empirical correlations u* and €y, the temperature profile is determined by

numerically evaluating the integral on the right-hand side of Eq. (7.11).

7.2 Results and Discussion

The mean temperature profile for a fully-developed flow in 2D channel of half-
depth h = 2mm, with friction velocity u* = 11 m/s and kinematic viscosity
v =5 x 107%m?/s are obtained using the approach of the previous section.
The corresponding mean velocity @ at the center line is about 300m/s, and

y™ ranges from 0 to 4400. The results are depicted in Figs. (7.1-7.4).

Fig. 7.1 shows the two-layer model mean velocity profile in the range of
0 < y* < 4400. Note that the velocity gradient at the center line (y* = 4400)
is zero, as required by the symmetry of the velocity profile across the chan-

nel. In Fig. 7.2, the comparison of turbulent and laminar parabolic profiles
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for the same mean velocity is made. The velocities are normalized with the

maximum velocity at the center line.

The temperature variations for different Prandtl numbers are plotted in
Fig 7.3. Note that, the discontinuity of -‘fi% at y* = 12 is due to the dis-
continuity of %‘y’% at y* = 12, and the fact that the estimates of ¢/nu is also
dependent %‘g—. Since the constant wall temperature boundary condition
is used in the calculation, the wall tempearuture keeps unchanged, and the
highest temperature occurs near to the wall due to the higher heat generation

there.

Finally, the computed temperature profile is compared in Fig. 7.4 with
that of laminar entrance flow. The plots indicated that a higher peak tem-
perature is predicted for fully-developed turbulent flow, and this effect is
attributed to the fact that, in the turbulent flow region, the viscous sub-
layer is spatially uniform and has a thickness which is significantly smaller

than that of the laminar boundary layer in the entrance region.
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Figure 7.1: Turbulent mean velocity distribution in wall coordinates. The
calculation is performed with maximum mean velocity g, = 300m/s, half
channel depth h = 2mm, viscosity v = 5.0eS.
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Figure 7.2: Comparison of turbulent and laminar parabolic profiles for the
same mean velocity. The velocities are normalized with the maximum tur-
bulent velocity at the center line. The turbulent velocity profile is computed

with maximum mean velocity Tpe, = 300m/s, half channel depth h = 2mm,
viscosity v = 5.e75.
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Figure 7.3: Turbulent mean temperature profile with four different Prandtl
numbers, 7, 25, 64 and 100 in wall coordinates and constant wall temperature
condition. The calculations are performed with maximum mean velocity
Umaz = 300m/s, half channel depth h = 2mm, and viscosity v = 5.e75.
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Figure 7.4: Dimensional turbulent mean temperature profile (maximum
mean velocity Tme: = 300m/s) and laminar entrance temperature profile
(maximum velocity is 300m/s) with Pr = 109, half channel depth h = 2mm,
and viscosity v = 5.e7%. Also, constant wall temperature condition is im-
posed at both cases.




Chapter 8

Homogeneous Isotropic
Turbulence

8.1 Introduction

As discussed earlier, characterization of the effects of shear-induced heating
in transitional/turbulent flows necessitates a study of unsteady temperature
fluctuations around their mean values. In the present chapter, estimates
are obtained for the simplified case of a statistically-steady homogeneous
isotropic turbulent field. The primary motivation behind the present exer-
cise is to derive approximate estimates for the amplitude of spatial tempera-
ture fluctuations, and to gain insight into the phenomena which govern their
behavior. To this end, we shall select high values for the kinetic energy dis-
sipation rate which are characteristic of high-speed flows in thin channels.
The evolution of the isotropic velocity and temperature distributions will be
computed using direct numerical simulation of the vorticity transport and

energy equations. The results will then be contrasted in the following chap-
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ter with simulations of turbulent channel flow.

8.2 Formulation

We assume an incompressible, constant-density fluid with constant proper-
ties. The motion of the fluid is governed by the conservation equations for
mass, momentum and energy. In a vorticity-based formulation, the governing

equations are expressed as:

—

%—:’+VX(B><H)=VV2B+V><? (8.1)
VU= -Vx @ (8.2)

DT
Py = kV2T + pd (8.3)

where ¥ is the velocity vector,  is the vorticity, T is temperature, p is den-
sity, t is time, ? is the force acting on the fluid, Cp is specific heat at constant
pressure, k is the thermal conductivity, v is the kinematic viscosity, u is the
dynamic viscosity, % = {%-}— u -V is the material derivative, and ® is viscous
dissipation function. The above vorticity-velocity formulation has become,
to a growing number of people, an attractive alternative to formualtions in
primitive variables. This interest (Guevremont et al. 1990; Gresho 1991) is

mainly linked to easier treatment of boundary conditions since the pressure

is no longer part of the solution.

- -+ = —
Let b= Vx f, f= (f1, fo, f3), b= (b1,bs,b3) in a Cartesian coordinate
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system (z,Y, 2) = (21, Z2,Z3). In component form, the vorticity forcing term

is given by:
oo Oh 05
! dy Oz
p, = 21 _0fs
’T 9z Oz
b= 2 _Oh
T 9r T By
and the governing equations are expressed as:
8w1 683 882 _ 9
5 +3y az-—wa1+b1
8w2 681 653 _ 9
—67 E‘ - '—6-; =vV Wy + b2
3a)3 682 681 _ 2
ot + or —Eg—l/v w3+b3
Owy; Ow
2y = 2 _
Viu = 0z Oy
Ows Ow
2 = -3 _ 1
V= e %
Ow; Ow
2 = —2 _ T2
Viug = Oy Oz
T  d(wiT)  O(uT)  O(usT)  _, v
5 + p + By + ER =aV T+cp<1)
Here,

S§1 = Uy — Ugws
S92 = U1W3 — Uz
83 = UoW] — U We

and the viscous dissipation function @ is given by:

Ouy,, Ous., ,Ous,,
5 ) +(ay) +(3,)

e = 2((

(8.11)



o (u Bw) (0w Buw)* (0w
oy Oz 0z Oz 0z

oy

For a statistically-steady, isotropic turbulent flow, we further assume that

periodic boundary conditions hold along the coordinate directions for the

velocity, vorticity, and temperature fields. Thus, these variables admit a

Fourier representation in terms of the coordinate variables z, y and z. In

Fourier space, the governing equations take the following form:

— ~
(b—t + I/I k |2)(;}1 = ikz§2 - iky§3 + b1
(5 +I E [ = ikobs — ik,81 + by
(-a—t + I/l 7{; I2)(2)3 = ikygl - Zkzgg + 53

-—)

| kP = ik @y — iy

AT IN N .y
| k l Ug = ’Lk‘mw;3 - zkzwl

AT IN A oA
| k "5 = ikyon1 — thoQy

a 2 —— —— — V A
(3 +o E DT + ik + ikyiaT + ik, ugT = —d
P

where, b= (kz, ky, k) is the wavenumber vector, and

|}§|=,/kg+k§+k§

_’
is the modulus of | § |.

8.3 Numerical Schemes

(8.12)

(8.13)

(8.19)

Flowfield simulation is performed using a pseudo-spectral formulation of the

governing equations. Briefly, the evolution of the Fourier coefficients for
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vorticity and temperature are computed by approximating non-linear source
terms using spectral collocation derivatives and numerically integrating the
resulting equations.

In the numerical implementation, we start with the vorticity transport
equation. We rely on factorization of the viscous diffusion term, and recast

the equations of motion of the Fourier coefficients of vorticity as:

;%(euﬁc’m@) = e* Pt ik, 55 — ik 55 + b)) (8.20)
%(evlklzt@) = e * Pt ik, 55 — ik,5] + by) (8.21)
%(e""c PG5) = e kP ik, 55 — ik, 85 + by) (8.22)

The Fourier coefficients 37, 53, and 53 are approximated using spectral collo-
cation derivatives and the discrete system is integrated using the second-order

Adams-Bashforth scheme. The resulting discrete evolution equations are:

1 ZI2
w1n+ _ e—u|k| Atwln

At

1 -
20s o

= 3 e tIRFGIDAL G ons

Jj=0

7, —~n—j —ul:|2At'\
) I B (8.23)
—~n+1 —u|k|?At~n
w2n+ — e Vikl s

At

1 -
= Zﬂje""lk|2(]+l)m(z’kx§§"_’
J=0
3 - 2 ~
— ik, ST e VIREAY, (8.24)
1 ¥ 2
@n+ _ e-—u|k| At@n

1
= 3 reIEPGHIAY g nm
j=0

At

— iky5" ) 4 e~IkIPAYE, (8.25)
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In equations (8.23-8.25), i = /-1, By = 3/2, B, = —1/2, and At is time
step.
Recall that the Fourier transform of f(z) is defined by:

1 +00 .
:E - f(z)e % %dz (8.26)

and that the inverse Fourier transform of F(£) is given by:

Fo[f(z)] = F(¢)

f6) = P = o= [ Fleeteag (8.27)

where F, and F,! denote the forward and inverse Fourier transforms, re-
spectively. By considering terms of the form F,'[e~%"F,[f(z)]], where a
is a positive number, it is easy to verify using the definitions of F, and
F1 that if the function f(z) is real-valued then this is also the case for
F7le ®’F,[f(z)]]. A similar observation also holds for terms of the form
F; ' [ige " Fy[f (2)]]-

In the computations, we take advantage of the above observations, and
also exploit the linearity of Fourier operators and the fact that transforms
and inverse transforms along different coordinate directions commute. By
doing so, we arrive at the following discrete system of evolution equations:

1
Wit = (Bl R (B e A, (F e A )l + 3 At
j=0

[(Fz—le—ukgAth) (Fy—le—uk;‘;AtFy) (Fz—le—uk?Atikze)s;—j

X

_ (Fz—le—ukgAtFm) (Fy—le—-l/k;‘;AtikyFy) (Fz—le—ukEAth)sg—j]

+ AL(Fle R E) (Frle AR, (F e ™ A F )b, (8.28)
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1
Wi = (R (F e AR (P A )uf 4+ 3 At
§=0

[ (Fz—le—ukgAtiksz) (Fy—le—uk;‘;AtFy) (Fz—le—ukgAth)sg*j

_ (Fx—le—ukgAtFx) (Fy—le—ukZAtFy) (F;le‘”katikze)s’f_j]
+ AH(FleRAR,) (Frle AR, ) (F e HAtE, )b, (8.29)

1
w;’f“ (F;le-ukgAtFm) (Fy—le—ukgAtFy) (Fz—le—ukath)wgz + Z Atﬂj

3=0
[ (Fz—le—-ukiAtFm) (Fy—le-usztikyFy) (Fz—le—ukgAth)s'{L—j

_ (Fgle—ukgAtiksz) (Fy—le—uk;‘;AtFy) (Fz—le-—ukath)S;—j]
+ AYF e RAE,)(Fle A, ) (Fr e A F, )by (8.30)

The advantage of the above system is that it yields the discrete evolution
of the vorticity field in physical space using a spectral collocation scheme
which involves real Fourier transforms only. This simplifies the numerical

implementation and results in significant computational savings over com-

plex FFTs.

Once the vorticity field is updated, Eq. (8.2) is inverted in order to de-
termine the velocity field. In the computations, we first consider the velocity

components u; and uy, as well as the combination,
Ue = Uy + TUy (8.31)

Based on the updated values of w;, wy, w3, we form the source terms

108




using spectral collocation derivatives, and define the combination,
Te =T1+ 1T (8.32)
Using Eqgs. (8.15) and (8.16), the Fourier transform of u, is determined from:

w(k) = ——_%FC(Z) B0 (8.33)
k

with 4, = 0 for 7;: 0. The components u; and u, are then solved together

by inverting Eq. (8.33), at the cost of one complex FFT.

Once u; and uy are determined, the velocity component u; is obtained
by using continuity equation and the definition of vorticity, W= Vx u. In

Cartesian coordinates, we have:

_ 6U3 BuQ

wy = 2y =3, (8.34)
_ aul 811,3

el (8.35)
_ Oug _ ou,

From u; and w,, we find %‘f using Eq. (8.35), and its Fourier transform
with respect to z. Suppose that % = @, + 10;, and U3 = U3, + iu3;, then
tk,U3 = @, +14d;. When k; # 0, %3 can be obtained through the spectrum
of 2. Assuming uz vanishes at (0,0,0), we have from the definition of the

Fourier transform:

N/2—-1

u3(0,0,0)= 3 @(ks,0,0) (8.37)
kz=—N/2
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Note that for 1-D real FFT, the real part of the Fourier coefficients is sym-
metric with respect to wave number, while the imaginary part of the coeffi-
cients is antisymmetric with respect to wave number, i.e. R,(3(ks,0,0)) =
R, (t3(—ks,0,0)), In(@3(kz,0,0)) = —3(—k,,0,0). Thus, the above expres-

sion reduces to

N/2-1

kz=1

and one inverse FFT will yield us(z,0,0), i.e velocity component u along

the z-axis.

Next, from us(z,0,0), we can solve for u3(z,y,0), i.e the value of us in
the z-y plane. We now form %’;ﬁ using Eq. (8.34), and its Fourier transform

with respect to y to obtain an expression of the form, %‘;ﬁ = b, + ib;. Then,

s = b;/ky~+ib, /ky if k, # 0. The coefficient of the zeroth mode is determined
using the definition of the Fourier transform; we have:

N/2-1

u3(2,0,0) = Y @3(z,k,,0) (8.39)
ky=—N/2

Taking advantage of the conjugate properties of the Fourier coefficients, we

obtain:
N/2-1
u3(z, ky = 0,0) = ug(z,y =0,2=0)—2 > @3(z, ky,0) (8.40)
ky=1

where u3(z,0,0) is known from the previous step. Then, the inverse FFT

will give the value of u3 in z-y plane.
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Finally, we consider the continuity equation to compute

& _ -2 %1:72) (8.41)
and apply a similar procedure to that of the previous two steps in order to
determine the Fourier coefficients 3 (z,y,k;). The complete distribution of
uz is then determined using 1D inverse Fourier transforms for points in the

z-y plane.

The new temperature field is obtained in the last step of the numerical
scheme. The energy equation is treated in a similar fashion to the integra-
tion of the vorticity transport equation. Specifically, we rely on spectral
collocation derivative for the convective terms and viscous dissipation func-
tion and on factorization of diffusive terms. In conjunction with this spatial
discretization scheme, we use the second-order Adams-Bashforth scheme for
the convective terms, and treat the dissipation term in an implicit fashion
using a Crank-Nicolson formulation. The resulting discrete temperature evo-
lution equation is:

T+l (Fz—le-—akgAth) (Fy—le—asztFy) (Fz—-le—akEAth)Tn
+%a_CA_E (Fz—le—akgAth)(Fy—le-—ak%AtFy) (Fz—le—akEAth)@n
P
2
+OMH) = 3 B AL (FFUFY

=0

(eoIKPG+DA R, o 1) prmi] (8.42)

where P = V.(u T).
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8.4 Forcing

In order to maintain a statistically steady field, a forcing function is used on
the right-hand side of the vorticity transport equation with forcing applied at
lower modes. Specifically, all Fourier modes with wavenumber components
equal to 0 or 1 are forced with a constant amplitude a;, but with a random
phase 6. Both the amplitude and phase are independent of Z Note that the
components of Z take only integer values, since the space period is 27. Such

a force field can be synthesized as

1 1 1
fil@y,2)= 3 37 3 ageierthwikato) (8.43)
kz=0ky=0 k,=0

and the three components of force field are generated independently. As will
be shown later, the kinetic energy dissipation rate does not achieve constant
steady-state values using the present forcing approach. Thus, a statistically-
steady state will be reached in the sense that the dissipation rate undergoes

small-amplitude fluctuation around a mean, constant value.

To reach a statistically steady state, energy loss through viscous dissipa-
tion had to be balanced with the energy injection through large-scale foring
function. Since we wish to fix the value of the kinetic energy dissipation rate,
€, the magnitude of the forcing field is adjusted during the calculations. In

particular, the coefficients of the forcing field are adjusted every several time
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steps so that:
%f})-ﬂ'dV:e (8.44)

where V' is the volume of the compuational domain.

8.5 Initial Conditions

A random velocity field u with —-g spectrum is synthesized by superposing
Fourier modes with random phases 6, uniformly distributed in the range of
[0, 2],

wi(e,y,2) = Y. (K2 + k2 + k2)~ iz eilkenthyytheaton (8.45)

ka Ky ka

The three velocity components, u; i = 1,2,3, are generated independently.
Since the resulting velocity field may not be divergence free, a correction
(or projection) step is necessary to ensure suitable initial conditions. There
exist several approaches which can be performed on the synthesized field u;
to render it divergence free. The method we have used is based on finding
the vorticity of the synthesized field, then reconstructing the velocity field
by inverting Eq. (8.2). This guarantees that the reconstructed field satisfy

the divergence-free condition.

As mentioned earlier, we wish to prescribe energy dissipation rates that
are characteristic of high-speed flows in pipes or channels with small cross-

sectional area. As a representative example, we consider a pipe of diameter
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D, with mean flow velocity u,,. Based on these ‘input’ values, we determine

the Reynolds number,

Re = UmD

(8.46)

14

where v is the kinematic viscosity. Next, we take advantage of well-known

correlations for the friction factor (Incropera & DeWitt 1990),

f=0316Rep’* Rep <2 x 104 (8.47)
f=0.184Rep'”® Rep > 2 x 10t '
use the definition of the friction factor,
—(dp/dx)D
= —(p—ug/% (8.48)

and the force balance across the area of the pipe to obtain the friction veloc-

/D 1dp

For turbulent pipe flow, the viscous dissipation rate € can be approximated

ity:

as
€~ ul/ky (8.50)

where y is the distance from the wall and « is the von-Karman constant. In
the calculations, we shall choose values of € corresponding to y = 12v/u,, i.e.

the viscous dissipation rate at the viscous sublayer.
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8.6 Results and Discussion

We present results of three simulations, performed with different resolution
grids. The first simulation is performed on a grid with N, x Ny x N, =
64 x 64 x 64 mesh points, while the other two are computed with a grid hav-
ing Ny X Ny x N, =96 x 96 X 96 points. For all three cases, the prescribed
viscous dissipation rate € = 1.25 x 10°m?/s%. Following the discussion of the
previous section, the chosen value of € corresponds to a high-speed flow with
mean velocity un, = 300m/s, viscosity v = 5.0 x 10-m?2/s, in a pipe of inter-
nal diameter D = 4mm. Based on the prescibed value of €, the Kolmogorov

microscale n = (13/e)}/4 ~ 0.562um.

The conditions of the simulations are listed in Table 8.1 which in par-
ticular provides values of the Kolmogorov microscale, 7, the integral scale,
L., the Prandtl number, Pr, as well as the minumum allowable values of
the normalized Kolmogorov scale, fimin, and the normalized Batchelor scale
min. In estimating these quantities, which are governed by the resolution
of the grid, we have related the Batchelor scale to the Kolmogorov scale by
¢ = v/Pry, and the criterion K x ma:z:(ﬁ,f) > 1.5 for the flow to be well
resolved. Here, K = N/2 is the normalized wavenumber corresponding to
wavelength equal to one grid size. Note that, since resolution requirements

increase significantly with increasing Prandtl number, we have restricted the

computations to the range Pr < 13.
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Table 8.1
Case | &nin Nmin n L. |L/n| Pr
1 0.0468 | 0.1146 | 0.562um | 31um | 55.3 6
2 0.03125 | 0.07654 | 0.562um 46pum | 81.8 6
3 0.03125 | 0.1148 | 0.562um 3lpym | 55.3 | 13.5

The computations are carried out for simulation times that are long
enough for statistically steady conditions to be reached. To verify that this
is in fact the case, we plot in Fig. 8.1-8.2 the evolution of the dissipation
rate, €, and the root-mean-square velocity, u,ms. The evolution of the energy
spectra for cases 1-3 is depicted in Figs. 8.3-8.5. The figures indicate that
the root-mean-square velocity undergoes small-amplitude fluctuations, and
that the energy spectra taken at large simulation times are nearly identi-
cal. Thus, statistically-steady conditions are reached during the simulations,
and this is not surprising since the simulation times correspond to several
eddy turnover times. For the presently selected value of the dissipation rate,
€ ~ 1.25 x 10°m?/s3, the eddy turnover time is about 0.38us for case 1,

0.42pus for case 2, and 0.40us for case 3.

The primary results of the temperature simulations are summarized in
Figs. 8.6-8.8, which respectively depict the temperature spectrum at dif-
ferent time steps for the cases 1-3. The figures indicate that, after a few
turnover times, the temperature spectrum also reaches a statistically steady

state. The amplitudes of the Fourier coefficients remain quite small, of the
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order of 1°K or less. This leads us to expect that spatial temperature fluctu-
ations also remain small. In order to verify this expected trend, we compare
in Fig. 8.9 the evolution of the peak within the domain to that of the average
temperature. We start from a uniform-temperature initial condition, so that
the peak and mean temperatures coincide at time ¢ = 0. Due to the (nearly)
constant dissipation rate, the mean temperature rises linearly, at a rate of
about 1.6°K/us. Despite the high-rate of energy injection, and the rapid
increase of the mean temperature of the fluid, the peak temperature remains
within less than two degrees from the average. This trend is consistent with
the results for the temperature spectrum which exhibits amplitude levels of

the same order approximately.

We also note that the amplitude of the spatial fluctuations in tempera-
ture are weakly dependent on the Prandtl number. This observation, may
be verified by comparing the range of amplitudes in the temperature spec-
tra in Figs. 8.6-8.8, should be contrasted with the quasi-one-dimentional
predictions in the previous chapter which reflected a linear dependence on
Pr. Thus, although the present simulations are restricted to low Reynolds
numbers, the present results support the notion that in isotropic turbulence
the regions of high energy dissipation also experience vigorous mixing, and
that the turbulent mixing of the fluid substantially reduces otherwise sharp
thermal gradients. In the following chapter, this intuitive picture will be

re-examined in light of simulations of turbulent channel flow.
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Figure 8.1: The variation of the viscous dissipation rate.
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Figure 8.2: The variation of the root-mean=square velocity of turbulent flow.
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Chapter 9
Turbulent Channel Flow

9.1 Introduction

In this chapter we examine the effects of shear-induced heating in a plane
channel flow. As indicated below, we adapt the vorticity-based formulation
of the previous section to periodic channel, and rely on direct numerical sim-
ulation of the governing equations to characterize the temperature field in a
transitional /turbulent flow environment. The predictions are then contrasted

with earlier results for isotropic turbulent flow.

9.2 Formulation

The physical formulation is identical to that of the previous chapter. Specif-
ically, we assume an incompressible fluid with constant physical properties,

and adopt a vorticity-based formulation of mass, momentum and energy con-

servation equations.
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In order to describe the set-up of the computations, we recall from the

previous chapter the governing equations in component form. We have:

%‘.‘.;l + %‘%3 ~ %22— = vV, (9.1)

% %‘1_1 - % =vV3w, (9.2)

% + %’;3 — %} = vV, (9.3)

V2u1 = % - %%)/i (9.4)

Vi, = %"?3 - % (9.5)

V2, = %% _ % (9.6)

oD, a(gf) + 20D _ ooy Za (0.7)

where (uy, up, us) denotes the velocity vector, (w1, wa, ws) the vorticity,
S1 = UzWwg — UgWws
S9 = UjWw3 — UzWwy
83 = UgWi — U1W2a

t is time, v the kinematic viscosity, & the thermal diffusivity, ¢cp the specific

heat at constant pressure, and ® the viscous dissipation function.

The governing equations are solved in periodic channel of height 2d. The
channel walls are assumed to be flat with normal along the z-direction. The
mean flow is oriented along the z-direction and y is the spanwise direction.

We assume that the velocity and temperature field are periodic along both
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the z and y directions. No slip boundary conditions are imposed at solid walls
are imposed, and heat losses at the walls are modeled using a prescribed heat
transfer coefficient. At the solid walls, z = 0 and z = 2d, we have:

’U,1=’IL2:U3=O

T
k- = h(T, - To)

where, d is the half depth of the channel, A is heat transfer coefficient, n is
normal to the wall, T,, is wall temperature, and T}, is the ambient temper-
ature outside channel. In addition to the above conditions, the definition of
the vorticity is also enforced at the solid boundaries. As explained below, the
mean vorticity at the walls is related to the mean pressure gradient, which

is treated as a parameter of the problem.

9.3 Normalization

The numerical scheme discussed in the following sections solves a normalized
form of the governing equations. Variables are normalized using the appro-
priate combination of the the fluid density, p, the channel half depth d, the
centerline velocity U, of the undisturbed flow, and the ambient temperature
outside of the channel T,,. For this choice of characteristic density, length,

velocity and temperature scales, the normalized governing equations become:

6w1 683 632 _ 1 9
o " oy 0z ReV “1 (9:8)
Owp 051 D55 _ 1

et —_ 2
5 "0z oz Be’ 42 (9-9)
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6&)3 382 ?_‘?_1_ 1

—_— —_—— = e—— 2
ot + o ay ReV w3 (910)
Owy Ow
2, = =2 _ 18
Ows Ow
20, = =3 _ 41
Viuy = or 0z (9.12)
Ow; Ow
2pe = ot _ T2
Vv Uz = ay A (913)
T  O(wiT)  0O(uT)  0(usT) 1 _,  Ec
ot T Tar T dy LT RePrV T+ TZE(I) (9.14)
where
d
Re=2Y (9.15)
7
is the Reynolds number,
v
the Prandtl number, and
_ U2

the Eckert number.

9.4 Numerical Scheme

The numerical scheme used is based on a mixed pseudo-spectral finite-difference
discretization of the governing equations. We use Fourier expansions in z and

y directions, and rely on second-order centered difference in the cross-stream




z direction. By Fourier transforming the governing equations in both z and

Yy, we obtain the following governing system for the Fourier coefficients:

3w1 332 1 82

. +1k,53 — o (—l k [+ )w1
sz 881 1 = 9 82
SR L =2
0wz .. .. _ 1 - 0?
3{1 + ’LszQ - Zkysl = Eé—(—l l2 9z 2)6&)3
82 0ws . __
(1 P+ 5508 = 52 — ik,
82 0w,
(& P+ 55)8 = ks - 2
0? o~
(- A >+ 52 5 Uz = ik — ikyws
or aA 2, 62 . Ec;
where
Ta = ulT
Tb = ’LLQT
Tc = U3T

The boundary conditions for the above system are:

U 1=% |v=0
Uz 1= [v=0

u3 1=z |[n=0
6_wl |1 =0 A(kw =_’ky = 0)
@1 J1,n= -%uzz (| k1#0)

(9.18)
(9.19)
(9.20)
(9.21)
(9.22)

(9.23)

(9.24)
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%%2 L= ﬁbg _}kw =k, =0)
@y hv= %2 (| k|#0)
ws |1,v=0
oT )
o hv= Ny(T |1,x —1) (9.25)

Here, Nu = hd/k is the Nusselt number, and N denotes the number of fi-
nite difference points in the z direction. Note that the equation of ws is not
coupled with other equations, so that its time integration may be carried out
independently of the others. On the other hand, @j and @; are coupled at
the boundaries with u; and u;. To overcome the difficulties associated with

this coupling, a boundary Green’s function technique is used.

Numerical integration of the vorticity transport and energy equations is
based on linear multi-step methods. For diffusion terms, an implicit treat-
ment is used based on the second-order Crank-Nicolson scheme. We use the
second-order Adams-Bashforth scheme for the convective terms in the vor-
ticity transport equation, and rely on spectral collacation derivative for the
convective terms in the energy equation. Following Daube (1992), a stag-
gered grid is employed in z direction. The grid points for the different field

quantities are defined as follows:

® u;, Uy and w3 are computed at nodes (iAz, jAy, (k + 3)Az) for 7,5 =

1,---,N;k=1,---,N—1,

® u3, wy, wy and T' are computed at nodes (iAz, jAy, kAz), for 4,5, k =

1,---,N.




At each interior point, standard second-ordered differences have been used
for both first and second derivatives. For nodes adjacent to the channel walls,
a special treatment is employed. Specifically, for velocity component u;, the

second derivative is approximated using

62U1 _ 4
(521 = 3ap g

- 3’11,1’% + 2’LL1’1)

This approximation comes from the usual centered difference over the nodes
(4,4, 2), (4,4, %), and (3, 4, 1) incorporated with the extrapolation of u; at the
fictitious point (i, 7, %) outside of the computational domain

1
’% = "3'(“1,% - 6“1,% -+ 8u1’1)

Uy
Similarly, the first derivative of u; on the nozzle wall k = 1 is approximated
using:

(a_ul_ __1
0z’ 3Az

Thus, derivatives in the z-directions are approximated using second-order

differences at both the interior and boundary nodes.

Implementation of the numerical scheme is summarized as follows. The
Fourier coefficient for the z-component of vorticity, @3 is updated by inverting

the discrete Helmholtz equation:

H@Mt = RWP (9.26)

with Dirichlet boundary conditions:
{ @?4‘1 — 0

1 (9.27)
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Here, H denotes the Helmholtz operator,

PR S o

T 9ReAz2 P-4 +(At 2Re

1 An+1 1 —-\n+1

+2ReAz2)w3i+z 2ReAz2 3‘+3

HEJ;;H-I —

and RW the explicit source term,

1
n_ o~ p e ey~ 9~
RVVz = Ew;;i_*_% _Z'IC-’IP‘S’?H-% +Zky81i+_§_ - —-—I k I w3H__

—~n
1 W3 — 2“’3z+§ + ""31'—5
2Re Az2

Next, we solve for %; and @; by inverting the coupled system:

H2w2"+1 = RzW(@:l)
Lo} = QuW (@3!)

with boundary conditions

,a\lrll+1 =0
m”;\}‘f'l —_ 0

G =2 if [k #0
| @y = o if [k # 0

94 = Re|, if k| =0
‘_"_211 RC—EIN lfIkI—O

Here, H, denotes the Helmholtz operator,

o 1 1
HG " = =g @i+ (g + 5 WP
1 ontl 1 —~n-+1

tRen 2 T 3Rens 2“’27“

(9.28)

(9.29)
(9.30)

(9.31)

(9.32)

(9.33)

(9.34)
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and R;W the explicit source term,

_——n

—n
o Sli+% — 511

Ry,W(w37) = —A_; - —A—z__z -+ zszs‘Ef
IE2ar 1 @iy — 257 + @y
2Re Az?

Meanwhile, L, represent a discrete “Laplacian” operator defined by:

n+1 ﬂ\nﬂ e n+1 m:l:él
L™y = 7 + 2
= ok = (R ) +
and
n+1 —~n+1
Q (An+1) w2z+1 — Wa; — ik ~n+1
2 W2, 41 —AZ—— RyWs; +1

is the corresponding source term.

(9.35)

(9.36)

(9.37)

For non zero modes, boundary Green’s functions are employed to decouple

the equations of 4; and &,. The boundary Green’s function technique exploits

the linearity of the elliptic operators by first solving the auxiliary system:

{ Hayip}t! = RyW (@7)

{ Lyuply = QoW (@33

~n+1 ~—n+l
uy; =uiy =0

and then expressing the solution of the full system as:

—~n+1l __ ~n+l
Bt = ) + S ot
gt = gyt
U11+1 U1, + 3 aka_l

Here, gF and fik—i- 1 are the solutions of the elementary problems:
2

Hygf=0 (k=1,2)
gi=1 gy=0
g%:O 912\’:1

(9.38)

(9.39)

(9.40)

(9.41)
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k — =

and oy (k = 1,2) are unknown coefficients. Their values are determined
by requiring that the corresponding solution satisfies the desired boundary
conditions, namely @;|?*! = %’Iz\ll?“, at ¢ = 1 and i = N. This requirement
leads to the following linear equation system:

3 1 1 3

_ 9 1 2 9
o (1 Azf% + 3Azf%) + az(SAng Azf%)
— i,ﬁin+1 _ _1_,17175&1 (943)

3 1 1 3
al(A_zfzir—m - @ﬁr—s/z) + ol - E'A_zfl%—3/2 + 'A_sz%’"l/?)

1 3 _
3Azulg’tl3/2 B E“l'fvtll/z (9-44)

which is inverted for all Fourier modes with non-vanishing moduli. For the

zeroth mode, i.e. when k; = k, = 0, the equations are integrated with the

boundary conditions

8y,  10p
57 N = 25 (9.45)
= aytt =0 (9.46)
(9.47)

A similar technique is used to update 43 and @;. The discrete system of

equations is first expressed as:

Hsoipt = RyW (@17) (9.48)

L31’F2?:%1 = Qs(@ ™) (9.49)
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with boundary conditions

"\ﬂ+1 =0
(st (950
ol =821, if k] #0
i 9.51
{ Oy =-%2|y if |k #£0 (5:51)
Wi =0 if[k=0
9.52
{-"’—‘“—L|N 0 if|k|=0 (9:52)

Here, H3 denotes the Helmoholtz operator,

. 1 11
Hoi™ = —opiz VR T L
1 ontl 1 ~~n+1

*Re AzQ)w T 2RehA2 i (9:53)

and R3W is the corresponding source term,

—~n —~n
A” So, 1 — Sy, 1
R3W(w11) = At Zky 3; + _‘_—‘—AZ
- 1 &\1:1_— _ 2(:)\17-7' + J)\ln+1

Meanwhile, L is a discrete “Laplacian” operator defined by:

1Tn+1

Usyis
— — T35
Lytip}fy = ~ (I + )uz:’ﬁ+ — (9.55)
and
_ ntl
Qs(@i) = ikaDa3] — 5"1’;1&—%—1— (9.56)

is the corresponding source term.




For Fourier modes having a non-vanishing modulus, boundary Green’s

functions are used to decouple the governing equations for vorticity and ve-

locity. We first solve the auxiliary system:

~n+ —~nN
H. 3Wi; = R? W (wli)
~n+1 ~n+
Wiy = wlN =0

{ u2 +1 — Q3(~n+1)

2
n+1 _ n+1

and then express the solution of the whole system as:

ontl ~n+1 2 k
w1, W ) + Ek:l IBkK'i
—~n+1l __ ~n+l 2 k
Uzipy = Uz 1 + k=1 ﬁk}‘i+%

Here, x} and A, are the solutions of the elementary problems:
2

Hkb =0 (k=1,2)
kl=1 k4 =0
K= k% =1

Lidf=0 (k=1,2)
M=0 X=0

(9.57)

(9.58)

(9.59)

(9.60)

(9.61)

and S (k = 1,2) are unknown coefficients whose values are determined by

requiring that the corresponding solution satisfied the desired wall boundary

conditions. This requirement leads to the following linear equation system:

3., 1 3., 1 .
'Bl(l—*—Az)\i 3Az %) + ﬂ2(Az)\% 3Az)‘%)
- 3 ~n+1 1 ~n+1
= AP T 3an (9.62)
1, 3 3, 1,
IBI(@'AN—WZ_A_Z/\N—I/z) + 52(1— AX_1/2 + 3z \V-3/2)
1, 1
=~ 3A2 2N+11/2 3Azu2N+—13/2 (9.63)
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which is inverted for every mode.

For the zeroth mode, the equations are subjected to the following bound-

ary conditions,

i
a“’l iy =0 (9.64)

Ly =wmyt =0 (9.65)

and inverted independently of the others.

The velocity compoment uz is updated by the discrete equation:

1 An+1 (|k|2 2 ),lTv}+1 + LAn-H

Az Az Ui A 2 U3iy1
= ik, — ik @yt (9.66)
with the boundary condition
Bt =wyt =0 (9.67)

Finally, the temperature field is advanced by inverting the discrete elliptic

equation:
GTr*' = RIT (9.68)

subject to the boundary condition,

-Qf frey T —_— i I -
{ gg:ll Nu(li —1) if [k| =0 (9.69)
79;|1=NUT1 1f|k|7é0
Ly =-Nu(@y-1) if k=0 (0.70)
&y = ~Nuly k| # 0
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Here, G' denotes the one-dimensional Helmholtz operator,
1

Fm+1 n+1 2
GT; T RePraz -1 T ( * IRe Prl |
e M __—T_rz+l n
2ReP7‘Az2)T 2RePrAz2 1 (9.71)
RT the corresponding source term,
o Tn A S T\C?+1 - i?—l 2m
RIY = R~k Toi — ik, T, 917 2RePr|k| g
1 Tz’-l|-1 - 2’1%1'" + Tin—l Ec 2ni1 | an
+2RePr A2? + 2Re (&7 +¢7) (9-72)

9.5 Initial Conditions

Simulations are performed in channel of depth of 0.2mm. The periodic
lengths in thestreamwise and spanwise directions are 0.47mm and 0.2rmm
respectively. The initial velocity field is obtained by superposing on the
one-dimensional streamwise mean velocity profile (Fig. 9.1) a randomly gen-
erated homogeneous 3-dimensional velocity field. The undisturbed mean
velocity profile is calculated using the two-layer model discussed in chapter
7, with the centerline velocity U, = 150m/s. The purturbation velocity field
has a root mean-square value equal to 0.02U,. For a kinematic viscosity

= 5.0 x 10%m?/s, the Reynolds number based on centerline velocity is
about 6,000. In order to avoid excessive resolution requirements, a moder-
ate value of the Prandtl number, Pr = 7, is selected. The temperature field
is initialized using the mean temperature distribution solution obtained in

Chapter 7 (Fig. 9.2).
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Another parameter we need to be concerned is the value of mean pressure
gradient, i.e. -gg, which controls the intensity of forcing within the channel,
and therefore the mass flow rate within the channel. When the undisturbed
centerline velocity is given, the corresponding friction velocity can be ob-
tained numerically using the two-layer turbulent velocity model within the

channel (Chapter 7). Then, the mean pressure gradient g—g is determined

through,
op _ P o
% = g (9.73)

The mean pressure gradient with respect to y, gg, is set to zero.

9.6 Results and Discussion

The computations are performed on a grid with N, x Ny x N, = 80x80x160
mesh points. We have let code run for 10,500 time steps, which is long
enough for the perturbation field to undergo significant deformation. The
time step At is chosen to be 0.1Az in normalized units, i.e. the Courant
number is approximately 0.1. The corresponding physical time step is about
0.818ns. As mentioned in the previous section, wall heat transfer is modeled
using a heat transfer coefficient. In the simulation, we have selected a value
h = 100W/m? -° K, which is the representative of forced air cooling at low

speed.
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‘The evolution of the mean flow is depicted in Figs 9.3-9.5, which show
profiles of the mean streamwise velocity %, mean spanwise vorticity Wy, and
mean temperature respectively. The profiles are obtained by averaging the
predictions along horizontal planes, i.e. planes parallel to the z-y plane. The
figures indicate that the velocity, vorticity and thermal boundary layers ad-
Just a little during the initial stages of the computations. Such an adjustment
is not surprising since the mean flow is initialized using the approximate pro-

files of a two-layer model.

Spatial fluctations of the velocity and vorticity fields are shown Figs. 9.6-
9.11 which respectively shown profiles of r.m.s. values of the fluctating part of
the streamwise, spanwise, and cross-stream velocity components, and of the
streamwise, spanwise, and cross-stream vorticity components. The fluctating
components are found by subtracting from the raw data the corresponding
mean value on horizontal planes, and the averaging on the same planes. The
figures indicate that the velocity and vorticity fluctations also undergo an
adjustment as time evolves, with an appreciable drop near the centerline of
the channel. This adjustment is to be expected since the initial field used in

the computations was perturbed using a homogeneous isotropic field.

Spatial fluctuations of the temperature field are first illustrated using tem-
perature distribution plotted along streamwise planes, i.e. whose normal is

parallel to the streamwise z-axis. Figures 9.12-9.14 show temperatures con-
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tours in the plane z = 27d at times t = 2.05us, t = 5.32us, and t = 8.59us,
respectively. The figures show that the temperature boundary layers at both
the lower and upper walls spread slightly during the initial stages, and that
the temperature distribution is significantly more deformed on the upper
wall than the lower one. The shape of the deformation is indicative of the
presence of concentrated eddies within the boundary layers. Comparison of
the temperature contours with velocity and vorticity distribution generated
in a similar fashion (not shown) indicated that the non-uniformities observed
near the top of Figs. 9.12-9.14 are due to the presence of streamwise vortices
which are periodically generated within the boundary layer and later ejected

into the ”free stream”.

The magnitude of the deformation indicated by the contour plots of the
temperature field leads us to expect significant temperature fluctations along
horizontal planes. To quantify these deformations, Fig. 9.15 compares cross-
stream profiles of the peak temperature and the mean temperature. The
results show that the largest departures occur within the boundary layer
structure. In particular, for the conditions of the simulation, the profiles for
the mean temperature and peak temperature achieve their maxima at ap-
proximately the same location near the upper boundary, with temperature
rises above the ambient of 10°K and 13°K, respectively. Thus, the tem-
perature fluctuations can achieve amplitudes as large as 30% of the mean

temperature rise, and thus represent a significant fraction of the total heat-
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ing locally experienced by the fluid.

The present results should be contrated with those of the previous chap-
ter which, for the case of isotropic turbulence, reflected spatial temperature
fluctuations having very small amplitudes. We believe that this contrast is
due to differences in the flow mechanisms which are associated with the ob-
served heating. In the isotropic case, rapid mixing of the mixture effectively
reduces the likelihood of occurrence of sharp temperature gradients. Such
mechanisms are clearly lacking near solid boundaries, where concentrated
eddies may be sustained for relatively large time periods in regions of low

velocity.

At any rate, the result of the present computations indicate that the
unsteady near-wall flow dynamics in transitional/turbulent flow regime can
have a significant impact on shear heating phenomena. In particular, esti-
mates of peak temperature based on mean temperature profiles only should

generally be expected to significantly underpredict the risk of mixture igni-

tion.

At present, it is unfortunately not feasible to rely on direct numerical
simulations to extend the predictions to the high-Reynolds-number high-
Prandtl-number regime. It would be possible, however, to obtain some con-

servative estimates by extrapolating low-Reynolds-number with the help of
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some reasonable assumptions, such as Reynolds-number independence and
linear dependence on the Prandtl number. Nonetheless, it would be crucial
that such extrapolations be tested against experimental results, and that ex-
periements are conducted in order to carefully examine, in particular, the

impact of near-wall dynamics on shear heating of the mixture.
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Figure 9.1: The initial undisturbed streamwise velocity profile.
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Figure 9.2: The initial cross-stream temperature profile with Pr = 7.
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Figure 9.14: The contour plot of temperature distribution in y-z plane(z =
2nd) at t = 8.59us.
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Appendix A

This appendix discusses the numerical simulation of the parabolized equa-
tions of motion for a constant property mixture. Section Al summarizes
teh governing equations in cylindrical (7, 2) coordinates, while Section A.2
provides the same system after transformation (4.23) is applied. Numer-

ical simulation of the unsteady (steady) equations is discussed in Section

A3(A4).

A.1 Parabolized Approximation for a Con-
stant Property Mixture

As mentioned in Section 4.3, the parabolized approximation of the equations
of motion is based on ignoring the appropriate streamwise gradients. Imple-
mentation of the approximation reduces the system of governing equations
to:

dw
ot

1 %w 0w

= E(*a‘ﬁ + E(?)) (A.1)

0 0
+ E(wv,) + a(wvz)
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017
Br(r (97‘) il (A-2)
oT oT orT 1 06*T 10T E,
v T TRE G T TR (A-3)
where
v, = —10¥
{ v, = 100" (A.4)
2" ror
v,
d (Br) (A.5)
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A.2 Stretched Coordinates

When the cylindrical coordinate system is stretched using the transformation

Eq. (4.23), the governing system of equations given above becomes:

3 0 28 w f, Ow w
62\11 3\1’ § a\I’
2_ T
& 5ez +&r—— 5 Tk —wr (A.7)
or or orT 1 232T orT fr or E,
B +’U§f7-8—§ + ’Uza—z- R.D, & 652 +&rmr f 'f) E@ (A.8)
where,
= _19%
Z T 9 :
ov
o 20 9Vz40
P~ T(af) (A.10)

where, £ and &, respectively denote 8¢/0r and 8%¢/0r2.




A.3 Unsteady Simulation

As in Section 4.2, a finite-difference approach to the simulation of the above
system of equations is adopted. Here, the non-linear convection terms are
treated using a 3rd-order Adams-bashforth scheme, while a 2nd-order Crank-

Nicolson scheme is applied to the remaining terms.

To simplify the presentation, we shall employ the following abbreviations:

fz = 35( )
9= 35(&) (A.11)
i = (&)

in conjunction with standard finite-difference notation. With these defini-

tions, time-stepping is summarized as follows:

1. The vorticity in the domain interior is updated by inverting, at every

streamwise location, the discrete elliptic equations:

HuwlF® = RW? (A.12)

2,7

with Dirichlet boundary conditions:

n 3 2f2 NE:Z NZ 1:1

Here, H denotes the one-dimensional Helmholtz operator,

1 g i f?
Howi = g Gag* orde ™ Asz)]“” b
1 2 1
LI

R.oAE T 3RaZ T E]“"”"

1 gi fi
_[2RC(A§2 T 2ng oA Wi (A-14)
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RW the corresponding source term,

wit? 1
RWE? = "XT + 15[2351?};2 — 1657 +557)]
_ 1 [f2w:lr12,1 — 2‘*)3;-2 + w?jlz,j
2R, Ag2
WM
g + f—)—%&—“ - (A.15)

7

and,

s = fWUists = WUgi1y | (W0n)iay — (WU)io1y
v 2A¢ 2Az

(A.16)
the vorticity convection term.

2. The new streamfunction distribution is computed by inverting, at every

streamwise section, the discrete “Laplacian” opeartors:
n+43 __ n+3

with the Dirichlet boundary conditions given in Eqs. (4.6) amd (4.7).

Here,

_ 9 E@) fi 21}
Ly;; = (2A§ TAE T oA )¢i—1,j+A—§2¢i,j

fi gi 2f?

*(orAg T 24 T AgVud (4.18)
is the discrete Laplacian associated with Eq. (4-7).
3. Determine the solid surface vorticity values using:
n+3 __ . 1n+43
wz':rf,‘;" = —2f2 ML (Alg)

T A§2
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4. Update the velocity field using:

- 2r; Az
('Uz)i,j = fi Yig1—Pi-1 (A-20)

('Ug)i,j — Yij1—viin
2r; A

5. Advance the temperature distribution by inverting, at every streamwise

location, the discrete elliptic equations:
GT[" = RT]}? (A.21)

subject to the Neumann conditions given in Eqs. (4.6-4.7). Here, G

denotes the one-dimensional Helmholtz opearator,

_ 1 g fi f} .
sz—;;] - [2RePr (2A§ + 27'2‘A£ A€2 )]ﬂ—l,]
121
*mp g T al
1 f gi fi

+ =+

“orp (ag * 3ag T arag) T (A-22)

RT the corresponding source term,

an+2 — 1}7’11_—}-2 1 23 Pn+2 16 Pn+1 P"
W = TTap Tpl23F - 16F + P
1 [ fzi”[iﬁ — 2T757% + T2,
2R.P, "¢ Ag2

% -TH%  E
s Lt C (P73 4+ 72 (A2
2Af ] + 2Re[ %) + (I)z,] (A 3)

L
+ (gz+ri)
and,

wi ’-_wi_ ,. W<’. _w-’._
P = (Uf)i,jfi“%ﬁ + (Uz)i,jﬂ%A"zA‘l (A.24)
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the thermal convection term. Note that the viscous dissipation function

is approximated through:

(A.25)

o fl.2((vz)i+1,£§”z)f-l’f ) 1<i<N,-1
J fz_2(4(vz)i+1,2jA‘§(”z)i-2:f )2 i=N,
while the grid stretching derivatives f; and g; are evaluated numerically,

respectively using:

fi= _ 288 (A.26)
Tit1 — Ti-1
(T — 27‘z+7“z— Tigl = Ti-1.3

A.4 Steady Code

When considering the steady parabolized equations of motion, the streamwise
coordinate z may be regarded as a time variable and the solution is marched
fro mthe inlet of nozzle towards the exit in small Az increments. Simulation
of the steady parabolized equations, which also employs the stretched grid
technique discussed above, on the following finite-difference discretizations

of the vorticity transport, streamfunction and energy equations:

Hw*! = wp(v,)?
Lyt = iy, (A.28)
M = (0,077 4 Be p gyt

where

n+l  — ,(Uf)?—l__A_z Az, f? i fi wnHl
Hoi™' = [_f’TAg R(A§2 2AE ~ 2rAE s

H)p + B + )l
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('Uf)?ﬂg _ éﬁ f 9i fi

HASG G~ s + g + ol (A.29)
Ly = [2& zf; 2rfA§]'/” ‘+i€2
{27,{25—2%5 A§2]¢z+l (A.30)
MIP* = ["f"(vg)jﬂﬁ_z_}zp,(gg?_2&_27{&) =y
+ L s iﬁi]w
v g R e o

and the notation w} = w(&,2,) = w(iAE,nAz) is used. Meanwhile, the
velocity components v; and v, appearing in Eqs. (A29-31) are respectively

approximated using:

(v )n+1 ¢n 1/)'n+1

§/i T,AZ (A32)
¢n+1 — gyl
(v)i ! = fi =L (A.33)

2r; A€

As in the unsteady case, solution marching requires the inversion of three
elliptic operators for the vorticity, streamfunction and temperature. How-
ever, in the present steady case, implicit vorticity boundary conditions are
implemented, so that the equation systems for vorticity and streamfunction
are coupled at the boundary. In order to reduce the computational cost as-
sociated with simultaneous inversion of the two systems, a boundary Green'’s
function technique is incorporated into the computations. This technique

exploits the linearity of the elliptic operators by first solving the auxiliary
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systems:
HoMY = o7 (v,)? !
{ (DIH}I — ijrj-zl(=2)z (A34)

LTZ”‘H — (:)IH'l’ri
it =0 (A.35)
Yt = St ruy(r)dr

and then expressing the solution to the full system as:

WPt = @it 4 ek
{ ,¢;L+l — ’(,Z‘?H + €\ (A'36)
where «; and ); are the solutions to the elementary problems:
H Ki = 0
K1 = 0 (A37)
KN, = 1
L/\i = K;T;
{ ki = Ry, = 0 (A.38)

and € is an arbitrary constant. Choosing € so that vorticity boundary condi-

tions are satisfied, we find:
2fR, (Tl _ Tntl
. Algz (¢Krf - ’Q/}]’\lfj-l)

2f2
1+ 2y, 1

(A.39)

No such difficulty is encountered in the marching of the energy equation, since

homogeneous Neumann boundary conditions are imposed both at r = 0 and

r=1.
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Appendix B

"This appendix discusses the numerical simulation if the parabolized equations
of motion for an incompressible variable property mixture. Two models are
used in the computations: the first model accommodates a temperature-
dependent viscosity, but assume that a constant thermal conductivity. In
the second model, both the viscosity and thermal conductivity are taken to
be temperature dependent.

Since the former model may be regarded as a special case of the second, only
the more general case is discussed. Section Bl summarizes the governing
equations for the parabolized approximation in cylindrical (r, z) coordinates,
while Section B2 provides the same system after transformation (4.23) is ap-
plied. Numerical simulation of the unsteady (steady) equations is discussed

in Section B3 (B4).
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!
!

B.1 Parabolized Approximation for a Vari-

able Property Mixture

When the appropriate streamwise gradients are ignored, the governing equa-

tions given in Section 5 reduce to:

ow 0 0 1 ,0w 0w
a1 T W)+ 5(wv,) = el (2 +5,(2)
+6V* (26_w + .(f).) + Qz_y_*]
or ' or r @ or?
9,19y
| oo ¥
o T, o0 1o orEe
at " "ar " "8z ~ RePr ror " ar Re’
where
v = 20
’i( ~0)
k*= F(T)
k(T,)
fvr — _l.ai
{ v, = l%'!é(’)z
0v; 4
&~ or )

and the ~ is used to denote a dimensional quantity.

170




B.2 Stretched Coordinates

When the cylindrical coordinate system is stretched using the transformation

Eq. (4.23), the governing system of equations given above becomes:

0 0 0 0w
B+ 6 ) + - wn) = v (3652
£r Ow
+§rra£ T ) fr €(§r§ )
, 0%V ov*
(€r 662 +€1‘1‘ ag )]
232¢ +e o) &0y _
rogz ST 3 r a
aT OT  of _ 1 &0, Ec
_6?+v£&8§+ *8z RePr[raf( )]+_V(I)
where
{ v = :Q%w%f
27T r B¢
& ~ ()

while &, and &, respectively denote 0¢/0r and 8%¢/0r2.

B.3 Unsteady Simulation

(B.11)

(B.12)

As in Appendix A, a finite-difference methodology is adopted in the simula-

tion of the above system of equations. Here, teh non-linear convection terms

are treated using a 3rd-order Adams-Bashforth scheme, while a 2nd-order

Crank-Nicolson scheme is applied to the remaining terms. Using the same

171



172

notation of Appendix A, time-stepping is summarized as follows:

1. The vorticity in the domain interior is updated by inverting, at every

streamwise location, the discrete elliptic equations:
2
H w{f}"3 = RWi’}j+ (B.13)

with Dirichlet boundary conditions:

w3 =
»J
gnt3 _yn+3 B.14
oty = -2, i .

Here, H denotes the one-dimensional Helmholtz operator,

1 gi fz f2
n+d [ ((y*\P T3 -
Hui; Py Gl (2A§ t oA T A
2(”*)?113,1'—(”*)?—4_13:]' n43 1 L 0 vngs _f_z_2_
+ fi 2A€2 ] i—l,j+[2Re((v )'i,j A§2
(U*)?:ﬁj - (U*)?jﬁj
2A¢
_ L = 200 O
i A§2
i n+3 __ _1_ x\n+3; G fi fz‘2
* A R (W Gae + ras t A
(o) = 0
S 7 v R D (B.15)

1 i
+ 2L

RW the corresponding source term,

n+2

w] 1
RWi? = ——&-+ {23552 — 1657} + 58]
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- _1__ (v* )n+2[f2w:1f12] 2w n+2+w?j12,7
2Re Ag?
fiyw ?-;1-121 — Wi’ +121 wi? 2“’74-'-12 Wi 21

i+ — : 2 . 2 J
iy 2]+(f v
+ n+2[f2( ):1:12,] _ 2(1]* :13-2 + ('U :l—-*-12_7

Ag?

v *\n+2 f_l:}-Z’

v o ‘“”mf( il (B.16)

and,

fz(wvf)'“’z - éwvz)z Lj | (wvz)i,j+§2 ; Z(W'Uz)i,j-l (B.17)

the vorticity convection term.

Note that the viscosity values at time level n + 3, which appear in the
definition of the Helmholtz operator (B.15), are not generally known
before the energy equation is solved. In order to avoid a nonlinear
coupling between the vorticity transport and energy equations, the fol-

lowing approximation is used in the computations:

('U n+3 _ 2( *\n+2 (v )n+1 (B.18)

1,J i, .7

2. The new streamfunction distribution is computed by inverting, at every

streamwise section, the discrete “Laplacian” operator:

Ly = rw}f? ' (B.19)
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with the Dirichlet boundary conditions given in Eqs. (4.6) and (4.7).

Here,
; 2z 2f?
Lwij = (2gA€ - {SA?Q) - o Ag)wi-—l,j ‘22"/)1,]
. 2
+ fi 9 2f Ty (B.20)

IAE  2AE AL

is the discrete Laplacian associated with Eq. (B.9).

3. Determine the solid surface vorticity values using:

n+3 n+3
2 YNps — VN, o1

wits =23 A (B.21)

4. Update the velocity field using:
(ve)is = %’i (B.22)

(v2)ij = f%ﬁfm—{m

5. Advance the temperature distribution by inverting, at every streamwise

location, the discrete elliptic equations:
GT/® = RT}}* (B.23)

subject to the Neumann conditions given in Egs. (4.6-4.7). Here, G

denotes the one-dimensional Helmholtz operator,

GT_n;H& — [ 1 fz (k*)n+3rz lfz n+3
: 2RePrr; Ag? =L
+[ 1 fz (k*)n+37'zfz (k*):l_*f:ﬂ'z 1fi-1
2RePr r; Ag?
__1_ T-nﬂ-3 _ [ 1 fz (k*)n+37"zfz
At 2RePrr; A&

+

IT74% (B.24)




RT the corresponding source term,

RT? = - A]t + 523F" — 16P + Py
_ 1 f_z'_((k*)n+2rtfz( z+1_7 Tznj+2)
2RePrr; Ag?
_ (k*):H-lijz—l fl (TZLJ+2 TTH- J) )
Ag?
Ec n3nts | (;x)nt2 n+2
+ 5Fe (1/),] g + (v ) 0 (B.25)
and,
Pij = fi(vg)i o + ()i 5 e (B.26)

the thermal convection term.

Note that the viscosity and thermal conductivity values at time level
n + 3, which appear in the definition of the Helmholtz opeator (B.24)
and the cource term (B.25), are not known before the new temperature
distribution is determined. In order to avoid nonlinear iterations, the

following approximations is used in the computations:

W) = ) - (! (B.27)
(k*);j;*3 = 2(k* g;ﬂ - (k*);.f;fl (B.28)

As in Appendix A, the viscous dissipation function is approximated

through:
5, = f2(i1()z)a)+1 ;Ag'l()z)i)—.l,j ?2 1<i<N, -1 (B.Zg)
. fz2( Vz 1—12]A€vz i~2,9 )2 74 — Nr
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while the grid stretching derivatives f; and g; are evaluated numerically,

respectively using:

fi= 288 (B.30)

Tit1 — Ti—1
g = (ris1 = 2ri + i)/ AE?
' [(Ti+1 - Ti—l)/2Af]3

(B.31)

B.4 Steady Code

Simulation of the steady parabolized equations of motion follows a sim-
ilar approach to that used for constant property flow. Specifically,
the simulation is based on the following stretched grid finite difference

approximations of the vorticity transport, streamfunction and energy

equations:
Hw?+1 = w?('“z)?—l
Lyt = wittr (B.32)
MIPH = (0 TP + B A () )
where
nt+l . [_ .(’Uﬁ)?—lé__z___A_E *\n+1 fz2 _ 9i _ fz
Ho™ = = At Re W (A& ~ 3¢ SrAE)
_ ‘2(1/*)?-:-11 - (V*)?jll n+1 n é_z_ 2(V*)?+1fi2
2fz 4A£2 )]wz—l +[(UZ)1, + Re( A§2
+ ()it — /i (V*)?-:ll — () _ g_(V*)?j-'ll — ()
2 i 2r; A& ' 2A¢
R =20+ () (ve)ih, Az
f A lpt + [ 2
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n fi2 g fi
- (( LYV REvvas 3rAE)
n+1 (l/ )n+1

+ 2f,2 (V i+2A§2 ) w;{t_'-_}-ll (B.33)
G fZ fi 27
L = (Gae = a ~ rgg et +
fz’ Gi f2
+ (ZTzAf 2A§ A€2 )"Z)H-l (B34)
MT_TH-I — ["'fz (’UE)IH-I éf_ _ Az f‘l (k*) ~1 "'z 1f2 ]Tri-}il

2 Re RePrr; Ag?

+ ()P + Az ﬁ(k*)?+17ifi+(k*)?ff?‘z—lfi"l]Tﬂﬂ

RePr r; Ag?

o A s g
2 Re RePr Ag

and the notation w}! = w(&;, 2,) = w(iAE,nAz) is used. The velocity
components v¢ and v, appearing in Eqgs. (B.33-35) are respectively

calculated using:

ntl _ ¢n ¢n+1
(ve); A (B.36)
n+1 n+1
n+l __ ¢i+1 — wi—l
(v)i ™ = TorAE (B.37)

while the unknown values (v*)"*! and (k*)"*! appearing in the defini-

tions (B.33) and (B.35) are respectively approximated through:
(Wit =20")F — () (B.38)
(k*)i+h = 2(k")F — (k)77 (B.39)

The numerical solution of Eqs. (B.33-35) uses the same LU-decomposition

in conjunction with Boundary Green’s function technique summarized

sy (B.35)
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in Appendix A4.

178




Bibliography

[1] ArPAcl, V. Conduction Heat transfer (Addison-Wiley; MA, 1966).

[2] AVALLONE, E.A. & BAUMEISTER, T. Mark’s Standard Handbook for
Mechanical Engineers, 8th Edition (McGraw-Hill, NY; 1978).

[3] BATCHELOR, G. K. Introduction to Fluid Dynamics (Cambridge Uni-
versity Press; Cambridge, 1967).

[4] BourNE, N.K. & FIELD, J.E. Bubble collapse and the initiation of
explosion. Proc. R. Soc. London, A435 423-435, 1991.

[6] BATCHELOR, G. K. The Theory of Homogeneous Turbulence. Cam-

bridge University Press; Cambridge, 1959.
[6] BURMEISTER, L.C. Convective Heat Transfer (Wiley; New York, 1993).

[7] CanNuTo, C., HussaNi, M. Y., QUARTERONI, A., & ZANG, T. A.

Spectral Methods in Fluid Dynamics. Springer-Verlag, 1988.

[8] CArsLaw, H.S. & JAEGER, J.C. Conduction of Heat in Solids (Oxford
University Press; Oxford, 1959).

179



180

[9] CeBECI, T. & BRADSHAW, P. Physical and Computational Aspects of
Convective Heat Transfer. Springer-Verlag, 1984.

[10] DAUBE, O. Resolution of the 2D Navier-Stokesequations in velocity-

vorticity Form by means of an influence matrix technique. J. Comput.

Phys. 103, 402, (1992).

[11] ECKELMANN, H. The structrues of the viscous sublayer and the adjacent

wall region in a turbulent channel flow. J. Fluid Mech. 65, 439, (1974).

[12] FiELD, J. E. Hot spot ignition mechanisms for explosives. Acents.
Chem. Res. 25 489-496, 1992.

[13] FLECcTCH, C. A. J. Computational Techniques for Fluid Dynamics
(Springer-Verlag; NewYork, 1988).

[14] FREEDMAN, E. “A Skeleton Outline of the Physical Chemistry of HAN-
Based Liquid Properties”, ARL Document (1986).

[15] Fung, J. C. H., HUNT, J. C. R., MALIK, N. A., & PERKINS, R. J.
Kinematic simulation of homogeneous turbulence by unsteady random

Fourier modes. J. Fluid Mech. 236, 281, (1992).

[16] GrESHO, P.M. Incompressible fluid dynamics: Some fundamental for-

mulation issues. Ann. Rev. Fluid Mech. 23, 413-453, 1991.

[17) GUEVREMONT, G., HABAsHI, W. G., & HAFEZ, M. M. Int. J. Num.
Methods 10, 461 (1990).




[18] HirscH, C. Numerical Computation of Internal and Ezternal Flows

(Wiely; New York, 1990).

[19] INCROPERA, F. C. & DEWITT, D. P. Fundamentals of Heat and Mass
Transfer (Wiley; New York, 1990). ‘

[20] KAYs, W. M. & CRAWFORD, M. E. Convective Heat and Mass Trans-
fer. McGraw-Hill; 1980.

[21] KATz, J., SHI, X., & O. M. KN10 Numerical study of shear-induced
heating in high-speed nozzle flow if liquid monopropellant. 31th JAN-
NAF Combustion Subcommittee Meeting, Chemical Propulsion Informa-

tion Agency, Nov., 1994.

[22] KM, J., Mo, P., & MOSER, R. Turbulence statisticas in fully de-
veloped flow at low Reynolds number. J. Fluid Mech. 177, 133, (1985).

[23] KLEISER, L., & ZANG, T. A. Numerical simulation of transition in

wall-boundedshear flows. Annu. Rev. Fluid Mech. 23, 495, (1991).

[24] KNAPTON, J. D., MESSINA, N. A. & TARCZYNSKI, M. Some unsolved
problems on ignition mechanisms in hydroxylammonium nitrate based
liquid propellants. In 29th JANNAF combustion Subcommittee Meeting,

Chemical Propulsion Information Agency, October 1992.

[25] L1, S., MENEVEAU, C., & KATz, J. On the properties of simularity

subgrid-scale modelsas deduced from measurements in a turbulent jet.

J. Fluid Mech. 275, 83, (1994).

181




[26] McQuAID, M. Private Communication (1994).

[27] MENEVEAU, C., LunD, T. S., & CaBoT, W. H. A Lagrangian dy-

namics subgrid-scale model of turbulence. J. Fluid Mech. (in process).

[28] NiaMATULIN, R.I. & KHABEEV, N.S. Heat exchange between a gas

bubble and a liquid, 1974.
[29] PANTON, R. Incompressible Flow (Wiley; New York, 1984).

[30] RAI, M. M. & MoIN, P. Direct simulations of turbulent flow using
finite difference schemes. J. Comput. Phys. 96, 15, (1991).

[31] ScuLICHTING, H. Boundary Layer Theory (McGraw-Hill; New York,
1979).

[32] SmiTH, C. R. & METZLER, S. P. The characteristics of low-speed
streaks in the near-wall region of a turbulent boundary layer. J. Fluid

Mech. 129, 27, (1983).

[33] TENNEKES, H. & LUMLEY, J. L. A First Course in Turbulence, MIT
press, 1990.

[34] TrHOMAS, T. G., & WILLIAMS, J. J. R. Turbulent simulation of open

channel flow at low Reynolds number. Int. J. Heat Mass Transfer. 38,
259, (1995).

[35] TRITTON, D. J. Physical Fluid Dynamics, Oxford, 1987.

182



[36] VINCENT, A. & MENEGUZZI, M. The spatial structrue and statistical-

properties of homogeneous turbulence. J. Fluid Mech. 225, 1, (1991).

[37] ZanG, T. A., GILBERT, N., & KLEISER, L. Direct numerical simula-

tion of the transitional zone. In Instability and Transition, pp-283-299,
Springer-Verlag, New York.

183




